Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T03:09:00.307Z Has data issue: false hasContentIssue false

Some enzymes of carbohydrate metabolism in Mesocestoides corti and Heterakis spumosa

Published online by Cambridge University Press:  05 June 2009

P. Dubinský
Affiliation:
Helminthological Institute, Solvak Academy of Sciences, Dukelskych hrdinov 3, 04001 Koˇsice, Czech and Slovak Federal Republic
B. Rušcinová
Affiliation:
Helminthological Institute, Solvak Academy of Sciences, Dukelskych hrdinov 3, 04001 Koˇsice, Czech and Slovak Federal Republic
S. L. Hetmanski
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs ST5 5BG, UK
C. Arme
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs ST5 5BG, UK
L. Turčeková
Affiliation:
Helminthological Institute, Solvak Academy of Sciences, Dukelskych hrdinov 3, 04001 Koˇsice, Czech and Slovak Federal Republic
M. Ryboš
Affiliation:
Helminthological Institute, Solvak Academy of Sciences, Dukelskych hrdinov 3, 04001 Koˇsice, Czech and Slovak Federal Republic

Abstract

The activities of selected enzymes of carbohydrate metabolism were measured in tetrathyridia of Mesocestoides corti and in adult females and males of Heterakis spumosa. When the species were compared, only lactate dehydrogenase and phosphoenolphyruvate carboxykinase activities were considerably higher in M. corti. Activities of other enzymes were higher in H. spumosa, with malate dehydrogenase activity being considerable so. In H. spumosa, enzyme activity was higher, and succinate dehydrogenase markedly so in males, when compared with females. Tetrathyridia aged 170 and 210 days show relatively stable malate and lactate dehydrogenase activities, and mice of ICR and BALB/c strains are suitable for the maintenance of tetrathyridia.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Behm, C. A. & Bryant, C. (1975) Studies of regulatory metabolism in Moniezia expansa: General considerations. International Journal of Parasitology, 5, 209217.CrossRefGoogle ScholarPubMed
Dubinský, P. & Ryboš, M. (1981) Activity of malate dehydrogenase in the reproductive organs and muscles of Ascaris suum. Helminthologia, 18, 205213.Google Scholar
Dubinský, P. & Ryboš, M. & Turčeková, L. (1989) The study of the nematode physiology by transfer per rectum. Helminthologia, 26, 137146.Google Scholar
Dubinský, P. & Ryboš, M. & Turčekova, L. (1990) Phosphoenolpyruvate metabolism in Dictyocaulus filaria and Dictyocaulus viviparus. Helminthologia 27, 249259.Google Scholar
Fukumoto, S. (1985) Pyruvate kinase isozymes and phosphoenolpyruvate carboxykinase during development of Spirometra erinacei. Yonago Acta Medica, 28, 89105.Google Scholar
Goldberg, D. M. & Ellis, G. (1983) Isocitrate Dehydrogenase. In: Methods of Enzymatic Analysis (Editor Bergmayer, H. U.). Volume II. pp. 19831990. Weinheim: Verlag Chemie.Google Scholar
Imbriani, J. J. & Platzer, E. G. (1982) Characterization of lactate dehydrogenase, malate dehydrogenase, pyruvate kinase, and phosphoenolpyruvate carboxykinase in Romanomermis culicivorax postparasitic larvae and adults. Comparative Biochemistry and Physiology, 72B, 2129.Google Scholar
King, T. E. (1967) Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. In: Methods in Enzymology. (Editors Estabrook, R. W. and Pullman, M. E.), Volume X. pp. 322331. New York: Academic Press.Google Scholar
KÖhler, p. (1985) The strategies of energy conservation in helminths. Molecular and Biochemical Parasitology, 17, 118.CrossRefGoogle ScholarPubMed
KÖhler, P. & Hanselmann, K. (1974) Anaerobic and aerobic energy metabolism in the larvae (tetrathyridia) of Mesocestoides corti. Experimental Parasitology, 36, 178188.CrossRefGoogle ScholarPubMed
Kulkarni, G., Jagannatha, Rao G. S., Srinivasan, N. G., Hoffer, H. W., Yuan, P. M. & Harris, B. G. (1987) Ascaris suum phosphofructokinase phosphorylation by protein kinase and sequence of the phosphopeptide. Journal of Biological Chemistry, 262, 3234.CrossRefGoogle ScholarPubMed
Lineweaver, H. & Burk, D. (1934) Determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658666.CrossRefGoogle Scholar
Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265275.CrossRefGoogle ScholarPubMed
Podesta, R. B. & Mettrick, D. F. (1974) The effect of bicarbonate and acidification on water and electrolyte absorption by the intestine of normal and infected (Hymenolepis diminuta: Cestoda) rats. American Journal of Digestive Disease, 19, 725735.CrossRefGoogle ScholarPubMed
Rune, S. J. & Henricksen, F. W. (1969) Carbon dioxide tensions in the proximal part of the canine gastrointestinal tract. Gastroenterology, 53, 758762.CrossRefGoogle Scholar
Saz, H. J. (1981) Energy metabolism of parasitic helminths: Adaptations to parasitism. Annual Reviews of Physiology, 43, 323341.CrossRefGoogle ScholarPubMed
Simek, J. (1986) Physiological Values in Man (In Slovak). Praha: Avicennum.Google Scholar
Smith, P. E. (1953) Life history and host-parasite relation of Heterakis spumosa, a nematode parasite in the colon of the rat. American Journal of Hygiene, 57, 194221.Google ScholarPubMed
Starling, J. A., Allen, B. L., Kaeini, M. R., Payne, D. M., Blytt, H. J. & Hoffer, H. W. (1982) Phosphofructokinase from Ascaris suum: Purification and properties. Journal of Biological Chemistry, 257, 37953800.CrossRefGoogle Scholar
Stitt, M. (1984) Citrate synthase (Condensing enzyme). In: Methods of Enzymatic Analysis (Editor Bergmayer, H. U.), Volume IV, pp. 353358. Weinheim: Verlag Chemie.Google Scholar
Supowit, S. C. & Harris, B. G. (1976) Ascaris suum hexokinase: Purification and possible function in compartmentation of glucose 6-phosphate in muscle. Biochemica et Biophysica Acta, 422, 4859.CrossRefGoogle ScholarPubMed
Tielens, A. G. M. & Van Den Bergh, S. G. (1985) The (an)aerobic energy metabolism of parasitic helminths. Molecular Physiology, 8, 359369.Google Scholar
Todd, K. S., Simon, J. & Dipietro, J. A. (1978) Pathological changes in mice infected with tetrathyridia of Mesocestoides corti. Laboratory Animals, 12, 5153.CrossRefGoogle ScholarPubMed
Van Den Bossche, H. (1976) The molecular basis of anthelmintic action. In: Biochemistry of Parasites and Host-Parasite Relationships. (Editor van den Bossche, H.), pp. 553572. Amsterdam: Elsevier Biomedical Press.Google Scholar
Weinbach, E. C. & Eckert, J. (1969) Respiration of the larvae (tetrathyridia) of Mesocestoides corti. Experimental Parasitology, 24, 5462.CrossRefGoogle ScholarPubMed
Wilkes, J., Cornish, R. A. & Mettrick, D. F. (1982) Purification and properties of phosphoenolpyruvate carboxykinase from Ascaris suum. International Journal for Parasitology, 12, 163171.CrossRefGoogle ScholarPubMed