Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:10:01.094Z Has data issue: false hasContentIssue false

The role of global curvature on the structure and propagation of weakly unstable cylindrical detonations

Published online by Cambridge University Press:  19 January 2017

Wenhu Han
Affiliation:
Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
Wenjun Kong*
Affiliation:
Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China University of Chinese Academy of Sciences, Beijing 100039, China
Yang Gao
Affiliation:
Center for Combustion Energy, Tsinghua University, Beijing 100084, China
Chung K. Law*
Affiliation:
Center for Combustion Energy, Tsinghua University, Beijing 100084, China Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email addresses for correspondence: wjkong@iet.cn, cklaw@princeton.edu
Email addresses for correspondence: wjkong@iet.cn, cklaw@princeton.edu

Abstract

The role of the global curvature on the structure and propagation of cylindrical detonations is studied allowing and without allowing the development of cellular structures through two-dimensional (2-D) and 1-D simulations, respectively. It is shown that as the detonation transitions from being overdriven to the Chapman–Jouguet (CJ) state, its structure evolves from no cell, to growing cells and then to diverging cells. Furthermore, the increased dimension of the average structure of the cellular cylindrical detonation, coupled with the curved transverse wave, leads to bulk un-reacted pockets as the cells grow, and consequently lower average propagation velocities as compared to those associated with smooth fronts. As the global detonation front expands and its curvature decreases, the extent of the un-reacted pockets diminishes and the average velocity of the cellular cylindrical detonation eventually degenerates to that of the smooth fronts. Consequently, the presence of cellular instability renders detonation more difficult to initiate for weakly unstable detonations.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpert, R. L. & Toong, T. Y. 1972 Periodicity in exothermic hypersonic flows about blunt projectiles. Acta Astron. 17, 539560.Google Scholar
Arienti, M. & Shepherd, J. E. 2005 The role of diffusion at shear layer in irregular detonations. In The Fourth Joint Meeting of the US Sections of the Combustion Institute, Philadelphia, PA, March, vol. 182, pp. 2023.Google Scholar
Asahara, M., Tsuboi, N. & Hayashi, A. K. 2010 Two-dimensional simulation on propagation mechanism of H2/O2 cylindrical detonation with a detailed reaction model: influence of initial energy and propagation. Combust. Sci. Technol. 182, 18841900.CrossRefGoogle Scholar
Balsara, D. S. & Shu, C. W. 2000 Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405452.Google Scholar
Bourlioux, A. & Majda, A. J. 1992 Theoretical and numerical structure for unstable two-dimensional detonations. Combust. Flame 90, 211229.Google Scholar
Clavin, P. & Denet, B. 2002 On the direct initiation of gaseous detonations by an energy source. Phys. Rev. Lett. 88, 044502.Google Scholar
Clavin, P. & Williams, F. A. 2012 Analytical studies of the dynamics of gaseous detonations. Phil. Trans. R. Soc. Lond. A 370, 597624.Google ScholarPubMed
Deledicque, V. & Papalexandris, M. V. 2006 Computational study of three-dimensional gaseous detonation structures. Combust. Flame 144, 821837.Google Scholar
Eckett, C. A., Quirk, J. J. & Shepherd, J. E. 2000 The role of unsteadiness in direct initiation of gaseous detonations. J. Fluid Mech. 421, 147183.CrossRefGoogle Scholar
Faria, L. & Kasimov, A. R. 2015 Qualitative modeling of the dynamics of detonations with losses. Proc. Combust. Inst. 35, 20152023.CrossRefGoogle Scholar
Gamezo, V. N., Desbordes, D. & Oran, E. S. 1999 Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116, 154165.Google Scholar
Han, W., Gao, Y. & Law, C. K. 2015 Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space. Phys. Fluids 27, 106101.Google Scholar
He, L. 1996 Theoretical determination of the critical conditions for the direct initiation of detonations in hydrogen-oxygen mixtures. Combust. Flame 104, 401418.CrossRefGoogle Scholar
He, L. & Clavin, P. 1994 On the direct initiation of gaseous detonations by an energy source. J. Fluid Mech. 277, 227248.Google Scholar
Henrick, A. K., Aslam, T. D. & Powers, J. M. 2006 Simulations of pulsating one-dimensional detonations with true fifth order accuracy. J. Comput. Phys. 213, 311329.Google Scholar
Jiang, G. S. & Shu, C. W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202228.Google Scholar
Jiang, Z. L., Han, G. L., Wang, C. & Zhang, F. 2009 Self-organized generation of transverse waves in diverging cylindrical detonations. Combust. Flame 156, 16531661.Google Scholar
Kasimov, A. R. & Stewart, D. S. 2005 Asymptotic theory of evolution and failure of self-sustained detonations. J. Fluid Mech. 525, 161192.Google Scholar
Kessler, D. A., Gamezo, V. N. & Oran, E. S. 2011 Multilevel detonation cell structures in methane-air mixtures. Proc. Combust. Inst. 33, 22112218.Google Scholar
Law, C. K. 2006 Combustion Physics. Cambridge University Press.CrossRefGoogle Scholar
Lee, J. H. S. 2008 The Detonation Phenomenon. Cambridge University Press.Google Scholar
Lee, J. H., Knystautas, R., Guirao, C., Bekesy, A. & Sabbagh, S. 1972 On the instability of H2-Cl2 gaseous detonations. Combust. Flame 18, 321325.Google Scholar
Lee, H. I. & Stewart, D. S. 1990 Calculation of linear detonation instability: one-dimensional instability of plane detonation. J. Fluid Mech. 216, 103132.Google Scholar
Mahmoudi, Y. & Mazaheri, K. 2011 High resolution numerical simulation of the structure of 2-D gaseous detonations. Proc. Combust. Inst. 33, 21872194.Google Scholar
Mahmoudi, Y. & Mazaheri, K. 2012 Triple point collision and hot spots in detonations with regular structure. Combust. Sci. Technol. 184, 11351151.Google Scholar
Mahmoudi, Y. & Mazaheri, K. 2015 High resolution numerical simulation of triple point collision and origin of unburned gas pockets in turbulent detonations. Acta Astron. 115, 4051.CrossRefGoogle Scholar
Mahmoudi, Y., Mazaheri, K. & Parvar, S. 2013 Hydrodynamic instabilities and transverse waves in propagation mechanism of gaseous detonations. Acta Astron. 91, 263282.Google Scholar
Mazaheri, K., Mahmoudi, Y. & Radulescu, M. I. 2012 Diffusion and hydrodynamic instabilities in gaseous detonations. Combust. Flame 159, 21382154.CrossRefGoogle Scholar
McVey, J. B. & Toong, T. Y. 1971 Mechanism of instabilities of exothermic hypersonic blunt-body flows. Combust. Sci. Technol. 3, 6376.Google Scholar
Ng, H. D., Higgins, A. J., Kiyanda, C. B., Radulescu, M. I., Lee, J. H. S., Bates, K. R. & Nikiforakis, N. 2005 Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations. Combust. Theor. Model. 9, 159170.CrossRefGoogle Scholar
Ng, H. D., Kiyanda, C. B., Morgan, G. H. & Nikiforakis, N. 2015 The influence of high-frequency instabilities on the direct initiation of two dimensional gaseous detonations. In 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, August 2C7, Leeds, UK.Google Scholar
Ng, H. D. & Lee, J. H. S. 2003 Direct initiation of detonation with a multi-step reaction scheme. J. Fluid Mech. 476, 179211.Google Scholar
Ng, H. D., Radulescu, M. I., Higgins, A. J., Nikiforakis, N. & Lee, J. H. S. 2005 Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chain-branching kinetics. Combust. Theor. Model. 9, 385401.Google Scholar
Oran, E. S., Weber, J. R., Stefaniw, E. I., Lefebvre, M. H. & Anderson, J. D. 1998 A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model. Combust. Flame 113, 147163.CrossRefGoogle Scholar
Qi, C. & Chen, Z. 2016 Effects of temperature perturbation on direct detonation initiation. Proc. Combust. Inst. (in press).Google Scholar
Radulescu, M. I. & Lee, J. H. S. 2002 The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame 131, 2946.CrossRefGoogle Scholar
Radulescu, M. I., Sharpe, G. J. & Law, C. K. 2007a Effect of cellular instabilities on the blast initiation of weakly unstable detonations. In 20th International Colloquium on the Dynamics of Explosions and Reactive Systems.Google Scholar
Radulescu, M. I., Sharpe, G. J., Law, C. K. & Lee, J. H. S. 2007b The hydrodynamic structure of unstable cellular detonations. J. Fluid Mech. 580, 3181.Google Scholar
Radulescu, M. I., Sharpe, G. J., Lee, J. H. S., Kiyanda, C. B., Higgins, A. J. & Hanson, R. K. 2005 The ignition mechanism in irregular structure gaseous detonations. Proc. Combust. Inst. 30, 18591867.Google Scholar
Sharpe, G. J. & Falle, S. A. E. G. 2000 Numerical simulations of pulsating detonations: I. Nonlinear stability of steady detonations. Combust. Theor. Model. 4, 557574.CrossRefGoogle Scholar
Sharpe, G. J. & Radulescu, M. I. 2011 Statistical analysis of cellular detonation dynamics from numerical simulations: one-step chemistry. Combust. Theor. Model. 15, 619723.Google Scholar
Soloukhin, R. I. 1966 Multiheaded structure of gaseous detonation. Combust. Flame 10, 5158.Google Scholar
Short, M. 2001 A nonlinear evolution equation for pulsating Chapman–Jouguet detonations with chain-branching kinetics. J. Fluid Mech. 430, 381430.Google Scholar
Short, M., Kapila, A. K. & Quirk, J. J. 1999 The chemical-gas dynamic mechanisms of pulsating detonation wave instability. Philos. Trans. R. Soc. Lond. A 357, 36213637.CrossRefGoogle Scholar
Short, M. & Stewart, D. S. 1998 Cellular detonation stability. Part 1. A normal-mode linear analysis. J. Fluid Mech. 368, 229262.Google Scholar
Shu, C. W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439471.Google Scholar
Sow, A., Chinnayya, A. & Hadjadj, A. 2014 Mean structure of one-dimensional unstable detonations with friction. J. Fluid Mech. 743, 503533.Google Scholar
Vasil’ev, A. A. & Trotsyuk, A. V. 2003 Experimental investigation and numerical simulation of an expanding multifront detonation wave. Combust. Explos. Shock Waves 39, 8090.Google Scholar
Vasil’ev, A. A., Vasiliev, V. A. & Trotsyuk, A. V. 2010 Bifurcation structures in gas detonation. Combust. Explos. Shock Waves 46, 196206.CrossRefGoogle Scholar
Wang, C., Shu, C. W., Han, W. & Ning, J. 2013 High resolution WENO simulation of 3D detonation waves. Combust. Flame 160, 447462.Google Scholar
Wang, C., Zhang, X., Shu, C. W. & Ning, J. 2012 Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653665.Google Scholar
Watt, S. D. & Sharpe, G. J. 2003 One-dimensional linear stability of curved detonations. Proc. R. Soc. Lond. A 460, 25512568.Google Scholar
Watt, S. D. & Sharpe, G. J. 2005 Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves. J. Fluid Mech. 522, 329356.Google Scholar
Yao, J. & Stewart, D. S. 1996 On the dynamics of multi-dimensional detonation. J. Fluid Mech. 309, 225275.Google Scholar
Zhang, X. & Shu, C. W. 2012 Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231, 22452258.Google Scholar