Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:30:07.509Z Has data issue: false hasContentIssue false

Optimal undulatory swimming for a single fish-like body and for a pair of interacting swimmers

Published online by Cambridge University Press:  20 January 2017

Audrey P. Maertens*
Affiliation:
Center for Ocean Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Amy Gao
Affiliation:
Center for Ocean Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Michael S. Triantafyllou
Affiliation:
Center for Ocean Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
*
Present address: EPFL, LMH, Avenue de Cour 33 bis, 1007 Lausanne, Switzerland. Email address for correspondence: audrey.maertens@epfl.ch

Abstract

We establish through numerical simulation conditions for optimal undulatory propulsion for a single fish, and for a pair of hydrodynamically interacting fish, accounting for linear and angular recoil. We first employ systematic two-dimensional (2-D) simulations to identify conditions for minimal propulsive power of a self-propelled fish, and continue with targeted 3-D simulations for a danio-like fish; all at Reynolds number 5000. We find that the Strouhal number, phase angle between heave and pitch at the trailing edge, and angle of attack are principal parameters. For 2-D simulations, imposing a deformation based on measured displacement for carangiform swimming provides, at best, efficiency of 35 %, which increases to 50 % for an optimized motion; for a 3-D fish, the efficiency increases from 22 % to 34 %. Indeed, angular recoil has significant impact on efficiency, and optimized body bending requires maximum bending amplitude upstream of the trailing edge. Next, we turn to 2-D simulation of two hydrodynamically interacting fish. We find that the upstream fish benefits energetically only for small distances. In contrast, the downstream fish can benefit at any position that allows interaction with the upstream wake, provided its body motion is timed appropriately with respect to the oncoming vortices. For an in-line configuration, one body length apart, the efficiency of the downstream fish can increase from 50 % to 60 %; for an offset arrangement it can reach 80 %. This proves that in groups of fish, energy savings can be achieved for downstream fish through interaction with oncoming vortices, even when the downstream fish lies directly inside the jet-like flow of an upstream fish.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, M. V. & Colgan, P. W. 1987 Fish schools and their hydrodynamic function: a reanalysis. Environ. Biol. Fish. 20 (1), 7980.Google Scholar
Akanyeti, O. & Liao, J. C. 2013 A kinematic model of Karman gaiting in rainbow trout. J. Expl Biol. jeb.093245.CrossRefGoogle ScholarPubMed
Alben, S. 2009 Wake-mediated synchronization and drafting in coupled flags. J. Fluid Mech. 641, 489496.Google Scholar
Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.Google Scholar
Bainbridge, R. 1961 Problems of fish locomotion. In Symp. Zool. Soc. Lond., vol. 5, pp. 1332.Google Scholar
Bale, R., Hao, M., Bhalla, A. P. S. & Patankar, N. A. 2014 Energy efficiency and allometry of movement of swimming and flying animals. Proc. Natl Acad. Sci. 111 (21), 75177521.CrossRefGoogle ScholarPubMed
Beal, D. N., Hover, F. S., Triantafyllou, M. S., Liao, J. C. & Lauder, G. V. 2006 Passive propulsion in vortex wakes. J. Fluid Mech. 549, 385402.CrossRefGoogle Scholar
Bergmann, M., Iollo, A. & Mittal, R. 2014 Effect of caudal fin flexibility on the propulsive efficiency of a fish-like swimmer. Bioinspir. Biomim. 9 (4), 046001.Google Scholar
Blondeaux, P., Fornarelli, F., Guglielmini, L., Triantafyllou, M. S. & Verzicco, R. 2005 Numerical experiments on flapping foils mimicking fish-like locomotion. Phys. Fluids 17 (11), 113601.Google Scholar
Borazjani, I. & Sotiropoulos, F. 2008 Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Expl Biol. 211 (10), 15411558.CrossRefGoogle ScholarPubMed
Borazjani, I. & Sotiropoulos, F. 2010 On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J. Expl Biol. 213 (1), 89107.Google Scholar
Boschitsch, B. M., Dewey, P. A. & Smits, A. J. 2014 Propulsive performance of unsteady tandem hydrofoils in an in-line configuration. Phys. Fluids 26 (5), 051901.CrossRefGoogle Scholar
Breder, C. M. 1926 The locomotion of fishes. Zoologica 4, 159297.Google Scholar
Carling, J., Williams, T. L. & Bowtell, G. 1998 Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional Navier–Stokes equations and Newton’s laws of motion. J. Expl Biol. 201 (23), 31433166.CrossRefGoogle ScholarPubMed
Connell, B. S. H. & Yue, D. K. P. 2007 Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 3367.Google Scholar
Daghooghi, M. & Borazjani, I. 2015 The hydrodynamic advantages of synchronized swimming in a rectangular pattern. Bioinspir. Biomim. 10 (5), 056018.Google Scholar
Deng, H.-B., Xu, Y.-Q., Chen, D.-D., Dai, H., Wu, J. & Tian, F.-B. 2013 On numerical modeling of animal swimming and flight. Comput. Mech. 52 (6), 12211242.CrossRefGoogle Scholar
Deng, J. & Shao, X.-m. 2006 Hydrodynamics in a diamond-shaped fish school Project supported by the National Lab of Hydrodynamics of China. J. Hydrodyn. B 18 (3), 438442.Google Scholar
Dong, G.-J. & Lu, X.-Y. 2007 Characteristics of flow over traveling wavy foils in a side-by-side arrangement. Phys. Fluids 19 (5), 057107.CrossRefGoogle Scholar
Dong, H., Mittal, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.Google Scholar
Drucker, E. G. & Lauder, G. V. 2001 Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish. J. Expl Biol. 204 (17), 29432958.Google Scholar
Eldredge, J. D. 2006 Numerical simulations of undulatory swimming at moderate Reynolds number. Bioinspir. Biomim. 1 (4), S19.Google Scholar
Eloy, C. 2013 On the best design for undulatory swimming. J. Fluid Mech. 717, 4889.Google Scholar
Förster, C., Wall, W. A. & Ramm, E. 2007 Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Meth. Appl. Mech. Engng 196 (7), 12781293.Google Scholar
Gazzola, M., Argentina, M. & Mahadevan, L. 2014 Scaling macroscopic aquatic locomotion. Nat. Phys. 10 (10), 758761.CrossRefGoogle Scholar
Gero, D. R. 1952 The hydrodynamic aspects of fish propulsion. Fish propulsion 1601, 132.Google Scholar
Ginneken, V. v., Antonissen, E., Miller, U. K., Booms, R., Eding, E., Verreth, J. & Thillart, G. v. d. 2005 Eel migration to the Sargasso: remarkably high swimming efficiency and low energy costs. J. Expl Biol. 208 (7), 13291335.CrossRefGoogle Scholar
Gopalkrishnan, R., Triantafyllou, M. S., Triantafyllou, G. S. & Barrett, D. 1994 Active vorticity control in a shear flow using a flapping foil. J. Fluid Mech. 274, 121.CrossRefGoogle Scholar
Gray, J. 1933 Studies in animal locomotion. I. The movement of fish with special reference to the eel. J. Expl Biol. 10 (1), 88104.CrossRefGoogle Scholar
Harper, D. G. & Blake, R. W. 1990 Fast-Start Performance of Rainbow Trout Salmo Gairdneri and Northern Pike Esox Lucius. J. Expl Biol. 150 (1), 321342.CrossRefGoogle Scholar
Hemelrijk, C., Reid, D., Hildenbrandt, H. & Padding, J. 2015 The increased efficiency of fish swimming in a school. Fish and Fisheries 16 (3), 511521.Google Scholar
Ijspeert, A. J. 2014 Biorobotics: using robots to emulate and investigate agile locomotion. Science 346 (6206), 196203.Google Scholar
Johnson, S. G.2013 The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt.Google Scholar
Kern, S. & Koumoutsakos, P. 2006 Simulations of optimized anguilliform swimming. J. Expl Biol. 209 (24), 48414857.Google Scholar
Killen, S. S., Marras, S., Steffensen, J. F. & McKenzie, D. J. 2012 Aerobic capacity influences the spatial position of individuals within fish schools. Proc. Biol. Sci. 279 (1727), 357364.Google Scholar
Lauder, G. V. & Madden, P. G. A. 2007 Fish locomotion: kinematics and hydrodynamics of flexible foil-like fins. Exp. Fluids 43 (5), 641653.Google Scholar
Liao, J. C. 2007 A review of fish swimming mechanics and behaviour in altered flows. Phil. Trans. R. Soc. B: Biol. Sci. 362 (1487), 19731993.Google Scholar
Liao, J. C., Beal, D. N., Lauder, G. V. & Triantafyllou, M. S. 2003a Fish exploiting vortices decrease muscle activity. Science 302 (5650), 15661569.CrossRefGoogle ScholarPubMed
Liao, J. C., Beal, D. N., Lauder, G. V. & Triantafyllou, M. S. 2003b The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street. J Expl Biol. 206 (6), 10591073.CrossRefGoogle Scholar
Lighthill, M. J. 1960 Note on the swimming of slender fish. J. Fluid Mech. 9 (02), 305317.Google Scholar
Liu, G., Yu, Y.-L. & Tong, B.-G. 2011 Flow control by means of a traveling curvature wave in fishlike escape responses. Phys. Rev. E 84 (5), 056312.Google ScholarPubMed
Maertens, A. P.2015 Fish swimming optimization and exploiting multi-body hydrodynamic interactions for underwater navigation. PhD thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology.Google Scholar
Maertens, A. P., Triantafyllou, M. S. & Yue, D. K. P. 2015 Efficiency of fish propulsion. Bioinspir. Biomim.; (submitted) (under review).CrossRefGoogle ScholarPubMed
Maertens, A. P. & Weymouth, G. D. 2015 Accurate Cartesian-grid simulations of near-body flows at intermediate Reynolds numbers. Comput. Meth. Appl. Mech. Engng 283, 106129.Google Scholar
Marras, S., Killen, S. S., Lindstrom, J., Mckenzie, D. J., Steffensen, J. F. & Domenici, P. 2014 Fish swimming in schools save energy regardless of their spatial position. Behav. Ecol. Sociobiol. 18.Google ScholarPubMed
Partridge, B. L. & Pitcher, T. J. 1979 Evidence against a hydrodynamic function for fish schools. Nature 279 (5712), 418419.Google Scholar
Peng, Z. & Zhu, Q. 2009 Energy harvesting through flow-induced oscillations of a foil. Phys. Fluids 21 (12), 123602.Google Scholar
Pitcher, T. J. 1986 Functions of shoaling behaviour in teleosts. In The Behaviour of Teleost Fishes (ed. Pitcher, T. J.), pp. 294337. Springer.Google Scholar
Portugal, S. J., Hubel, T. Y., Fritz, J., Heese, S., Trobe, D., Voelkl, B., Hailes, S., Wilson, A. M. & Usherwood, J. R. 2014 Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature 505 (7483), 399402.Google Scholar
Powell, M. J. D.2009 The BOBYQA algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge.Google Scholar
Read, D. A., Hover, F. S. & Triantafyllou, M. S. 2003 Forces on oscillating foils for propulsion and maneuvering. J. Fluids Struct. 17 (1), 163183.Google Scholar
van Rees, W. M., Gazzola, M. & Koumoutsakos, P. 2013 Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers. J. Fluid Mech. 722, R3.Google Scholar
Reid, Daniel A. P., Hildenbrandt, H., Padding, J. T. & Hemelrijk, C. K. 2009 Flow around fishlike shapes studied using multiparticle collision dynamics. Phys. Rev. E 79 (4), 046313.Google Scholar
Reid, D. A. P., Hildenbrandt, H., Padding, J. T. & Hemelrijk, C. K. 2012 Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model. Phys. Rev. E 85 (2), 021901.Google Scholar
Rios, L. M. & Sahinidis, N. V. 2013 Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56 (3), 12471293.Google Scholar
Roberts, T. J. & Azizi, E. 2011 Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. J. Expl Biol. 214 (3), 353361.CrossRefGoogle ScholarPubMed
Sefati, S., Neveln, I. D., Roth, E., Mitchell, T. R. T., Snyder, J. B., Maciver, M. A., Fortune, E. S. & Cowan, N. J. 2013 Mutually opposing forces during locomotion can eliminate the tradeoff between maneuverability and stability. PNAS 110 (47), 1879818803.CrossRefGoogle ScholarPubMed
Sfakiotakis, M., Lane, D. M. & Davies, J. B. C. 1999 Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Engng 24 (2), 237252.Google Scholar
Shen, L., Zhang, X., Yue, D. K. P. & Triantafyllou, M. S. 2003 Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion. J. Fluid Mech. 484, 197221.Google Scholar
Shirgaonkar, A. A., MacIver, M. A. & Patankar, N. A. 2009 A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion. J. Comput. Phys. 228 (7), 23662390.Google Scholar
Stefanini, C., Orofino, S., Manfredi, L., Mintchev, S., Marrazza, S., Assaf, T., Capantini, L., Sinibaldi, E., Grillner, S., Walln, P. et al. 2012 A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers. Bioinspir. Biomim. 7 (2), 025001.Google Scholar
Streitlien, K., Triantafyllou, G. S. & Triantafyllou, M. S. 1996 Efficient foil propulsion through vortex control. AIAA J. 34 (11), 23152319.Google Scholar
Toki, G. & Yue, D. K. P. 2012 Optimal shape and motion of undulatory swimming organisms. Proc. R. Soc. Lond. B 279 (1740), 30653074.Google Scholar
Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7 (2), 205224.Google Scholar
Triantafyllou, M. S. & Triantafyllou, G. S. 1995 An efficient swimming machine. Sci. Am. 272, 6470.Google Scholar
Triantafyllou, M. S., Triantafyllou, G. S. & Gopalkrishnan, R. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids A 3 (12), 28352837.Google Scholar
Tytell, E. D. 2004 The hydrodynamics of eel swimming II. Effect of swimming speed. J. Expl Biol. 207 (19), 32653279.Google Scholar
Tytell, E. D. & Lauder, G. V. 2004 The hydrodynamics of eel swimming I. Wake structure. J. Expl Biol. 207 (11), 18251841.CrossRefGoogle ScholarPubMed
Videler, J. J. 1993 Fish Swimming. Springer.Google Scholar
Videler, J. J. & Hess, F. 1984 Fast continuous swimming of two pelagic predators, Saithe (Pollachius virens) and Mackerel (Scomber scombrus): a kinematic analysis. J. Expl Biol. 109 (1), 209228.Google Scholar
Webb, P. W. 1971 The swimming energetics of trout II. Oxygen consumption and swimming efficiency. J. Expl Biol. 55 (2), 521540.Google Scholar
van Weerden, J. F., Reid, D. A. P. & Hemelrijk, C. K. 2014 A meta-analysis of steady undulatory swimming. Fish Fish 15 (3), 397409.Google Scholar
Weihs, D. 1973 Hydromechanics of fish schooling. Nature 241 (5387), 290291.CrossRefGoogle Scholar
Weymouth, G. D., Dommermuth, D. G., Hendrickson, K. & Yue, D. K.-P. 2006 Advancements in Cartesian-grid methods for computational ship hydrodynamics. In 26th Symposium on Naval Hydrodynamics, Rome, Italy, 17–22 September 2006.Google Scholar
Weymouth, G. D. & Triantafyllou, M. S. 2013 Ultra-fast escape of a deformable jet-propelled body. J. Fluid Mech. 721, 367385.CrossRefGoogle Scholar
Wibawa, M. S., Steele, S. C., Dahl, J. M., Rival, D. E., Weymouth, G. D. & Triantafyllou, M. S. 2012 Global vorticity shedding for a vanishing wing. J. Fluid Mech. 695, 112134.Google Scholar
Wolfgang, M. J., Anderson, J. M., Grosenbaugh, M. A., Yue, D. K. & Triantafyllou, M. S. 1999 Near-body flow dynamics in swimming fish. J. Expl Biol. 202 (17), 23032327.Google Scholar
Zhu, L. & Peskin, C. S. 2003 Interaction of two flapping filaments in a flowing soap film. Phys. Fluids 15 (7), 19541960.Google Scholar
Zhu, Q. & Shoele, K. 2008 Propulsion performance of a skeleton-strengthened fin. J. Expl Biol. 211 (13), 20872100.CrossRefGoogle ScholarPubMed
Zhu, Q., Wolfgang, M. J., Yue, D. K. P. & Triantafyllou, M. S. 2002 Three-dimensional flow structures and vorticity control in fish-like swimming. J. Fluid Mech. 468, 128.Google Scholar