Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T16:57:36.322Z Has data issue: false hasContentIssue false

Opposition control within the resolvent analysis framework

Published online by Cambridge University Press:  19 May 2014

M. Luhar*
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
A. S. Sharma
Affiliation:
Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK
B. J. McKeon
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
*
Email address for correspondence: mluhar@cantab.net

Abstract

This paper extends the resolvent analysis of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382) to consider flow control techniques that employ linear control laws, focusing on opposition control (Choi, Moin & Kim, J. Fluid Mech., vol. 262, 1994, pp. 75–110) as an example. Under this formulation, the velocity field for turbulent pipe flow is decomposed into a series of highly amplified (rank-1) response modes, identified from a gain analysis of the Fourier-transformed Navier–Stokes equations. These rank-1 velocity responses represent propagating structures of given streamwise/spanwise wavelength and temporal frequency, whose wall-normal footprint depends on the phase speed of the mode. Opposition control, introduced via the boundary condition on wall-normal velocity, affects the amplification characteristics (and wall-normal structure) of these response modes; a decrease in gain indicates mode suppression, which leads to a decrease in the drag contribution from that mode. With basic assumptions, this rank-1 model reproduces trends observed in previous direct numerical simulation and large eddy simulation, without requiring high-performance computing facilities. Further, a wavenumber–frequency breakdown of control explains the deterioration of opposition control performance with increasing sensor elevation and Reynolds number. It is shown that slower-moving modes localized near the wall (i.e. attached modes) are suppressed by opposition control. Faster-moving detached modes, which are more energetic at higher Reynolds number and more likely to be detected by sensors far from the wall, are further amplified. These faster-moving modes require a phase lag between sensor and actuator velocity for suppression. Thus, the effectiveness of opposition control is determined by a trade-off between the modes detected by the sensor. However, it may be possible to develop control strategies optimized for individual modes. A brief exploration of such mode-optimized control suggests the potential for significant performance improvement.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bechert, D. W., Bruse, M., Hage, W., van der Hoeven, J. G. T. & Hoppe, G. 1997 Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 5987.CrossRefGoogle Scholar
Brandt, L., Sipp, D., Pralits, J. O. & Marquet, O. 2011 Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech. 687, 503528.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids 5 (3), 774777.CrossRefGoogle Scholar
Cattafesta, L. & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.CrossRefGoogle Scholar
Choi, H., Park, H., Sagong, W. & Lee, S. 2012 Biomimetic flow control based on morphological features of living creatures. Phys. Fluids 24, 121302.CrossRefGoogle Scholar
Chung, Y. M. & Talha, T. 2011 Effectiveness of active flow control for turbulent skin friction drag reduction. Phys. Fluids 23, 025102.CrossRefGoogle Scholar
Duque-Daza, C. A., Baig, M. F., Lockerby, D. A., Chernyshenko, S. I. & Davies, C. 2012 Modelling turbulent skin-friction control using linearized Navier–Stokes equations. J. Fluid Mech. 702, 403414.CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), 7376.CrossRefGoogle Scholar
Fukagata, K. & Kasagi, N. 2002 Active control for drag reduction in turbulent pipe flow. InEngineering Turbulence Modelling and Measurements (ed. Rodi, W. & Fueyo, N.), vol. 5, pp. 607616. Elsevier Science.CrossRefGoogle Scholar
Fukagata, K., Kern, S., Chatelain, P., Koumoutsakos, P. & Kasagi, N. 2008 Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J. Turbul. 9 (35), 117.CrossRefGoogle Scholar
Gad-el Hak, M. 2000 Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press.CrossRefGoogle Scholar
Hammond, E. P., Bewley, T. R. & Moin, P. 1998 Observed mechanisms for turbulence attenuation and enhancement in opposition controlled wall-bounded flows. Phys. Fluids 10 (9), 24212423.CrossRefGoogle Scholar
Henningson, D. S. & Reddy, S. C. 1994 On the role of linear mechanisms in transition to turbulence. Phys. Fluids 6 (3), 13961398.CrossRefGoogle Scholar
Högberg, M., Bewley, T. R. & Henningson, D. S. 2003 Relaminarization of $Re_{\tau }=100$ turbulence using gain scheduling and linear state-feedback control. Phys. Fluids 15, 35723575.CrossRefGoogle Scholar
Joshi, S. S., Speyer, J. L. & Kim, J. 1997 A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow. J. Fluid Mech. 332, 157184.CrossRefGoogle Scholar
Kim, J. 2011 Physics and control of wall turbulence for drag reduction. Phil. Trans. R. Soc. A 369, 13961411.CrossRefGoogle ScholarPubMed
Koumoutsakos, P. 1999 Vorticity flux control for a turbulent channel flow. Phys. Fluids 11, 248250.CrossRefGoogle Scholar
Lim, J. & Kim, J. 2004 A singular value analysis of boundary layer control. Phys. Fluids 16, 19801988.CrossRefGoogle Scholar
Luhar, M., Sharma, A. S. & McKeon, B. J.2013 Wall pressure fluctuations induced by coherent structures in turbulent pipe flow. In Eighth International Symposium on Turbulence and Shear Flow Phenomena (TSFP-8), Poitiers, France, 28–30 August.CrossRefGoogle Scholar
McKeon, B. J., Jacobi, I. & Sharma, A. S. 2013 Experimental manipulation of wall turbulence: a systems approach. Phys. Fluids 25, 031301.CrossRefGoogle Scholar
McKeon, B. J., Li, J., Jiang, W., Morrison, J. F. & Smits, A. J. 2004 Further observations on the mean velocity distribution in fully developed pipe flow. J. Fluid Mech. 501, 135147.CrossRefGoogle Scholar
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Meseguer, A. & Trefethen, L. N. 2003 Linearized pipe flow to Reynolds number $10^7$ . J. Comput. Phys. 186 (1), 178197.CrossRefGoogle Scholar
Min, T., Kang, S. M., Speyer, J. L. & Kim, J. 2006 Sustained sub-laminar drag in a fully-developed channel flow. J. Fluid Mech. 558, 309318.CrossRefGoogle Scholar
Moarref, R. & Jovanovic, M. 2012 Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205240.CrossRefGoogle Scholar
Moarref, R., Sharma, A. S., Tropp, J. A. & McKeon, B. J. 2013 Model-based scaling and prediction of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.CrossRefGoogle Scholar
Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.CrossRefGoogle Scholar
Pamies, M., Garnier, E., Merlen, A. & Sagaut, P. 2007 Response of a spatially developing turbulent boundary layer to active control strategies in the framework of opposition control. Phys. Fluids 19, 108102.CrossRefGoogle Scholar
Quadrio, M. & Ricco, P. 2004 Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251271.CrossRefGoogle Scholar
Quadrio, M., Ricco, P. & Viotti, C. 2009 Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161178.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary-layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Sharma, A. S. & McKeon, B. J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.CrossRefGoogle Scholar
Sharma, A. S., Morrison, J. F., McKeon, B. J., Limebeer, D. J. N., Koberg, W. H. & Sherwin, S. J. 2011 Relaminarisation of $Re_{\tau }=100$ channel flow with globally stabilizing linear feedback control. Phys. Fluids 23, 125105.CrossRefGoogle Scholar
Smits, A. J., Monty, J., Hultmark, M., Bailey, S. C. C., Hutchins, N. & Marusic, I. 2011 Spatial resolution correction for wall-bounded turbulence measurements. J. Fluid Mech. 676, 4153.CrossRefGoogle Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.CrossRefGoogle ScholarPubMed
Wu, X. & Moin, P. 2008 A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81112.CrossRefGoogle Scholar
Xu, S., Rempfer, D. & Lumley, J. 2003 Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech. 478, 1134.CrossRefGoogle Scholar