Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T02:51:57.609Z Has data issue: false hasContentIssue false

Long-wave dynamics of an inextensible planar membrane in an electric field

Published online by Cambridge University Press:  20 June 2014

Y.-N. Young*
Affiliation:
Department of Mathematical Sciences and Center for Applied Mathematics and Statistics, New Jersey Institute of Technology, Newark, NJ 07102, USA
Shravan Veerapaneni
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MN 48109, USA
Michael J. Miksis
Affiliation:
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
*
Email address for correspondence: yyoung@oak.njit.edu

Abstract

In this paper the dynamics of an inextensible capacitive elastic membrane under an electric field is investigated in the long-wave (lubrication) leaky dielectric framework, where a sixth-order nonlinear differential equation with an integral constraint is derived. Steady equilibrium profiles for a non-conducting membrane in a direct current (DC) field are found to depend only on the membrane excess area and the volume under the membrane. Linear stability analysis on a tensionless flat membrane in a DC field gives the growth rate in terms of membrane conductance and electric properties in the bulk. Numerical simulations of a capacitive conducting membrane under an alternating current (AC) field elucidate how variation of the membrane tension correlates with the nonlinear membrane dynamics. Different membrane dynamics, such as undulation and flip-flop, are found at different electric field strength and membrane area. In particular a travelling wave on the membrane is found as a response to a periodic AC field in the perpendicular direction.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelova, M. I. & Dimitrov, D. S. 1986 Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303311.Google Scholar
Angelava, M. I. & Dimitrov, D. S. 1987 Swelling of charged lipids and formation of liposomes on electrode surfaces. Mol. Cryst. Liq. Cryst. 152, 89104.Google Scholar
Angelova, M. I., Soleau, S., Meleard, Ph., Faucon, J. F. & Botheorel, P. 1992 Preparation of giant vesicles by external ac electric fields. kinetics and applications. Prog. Colloid Polym. Sci. 89, 127131.CrossRefGoogle Scholar
Antov, Y., Barbul, A., Mantsur, H. & Korenstein, R. 2005 Electroendocytosis: exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys. J. 88, 22062223.CrossRefGoogle ScholarPubMed
Bazant, M. Z., Kilic, M. S., Storey, B. D. & Ajdari, A. 2009 Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. 152, 4888.CrossRefGoogle ScholarPubMed
Bezlyepkina, R., Dimova, N., Jordo, M. D., Knorr, R. L., Riske, K. A., Staykova, M., Vlahovska, P. M., Yamamoto, T., Yang, P. & Lipowsky, R. 2009 Vesicle in electric fields: some novel aspects of membrane behavior. Soft Matt. 5, 32013212.Google Scholar
Blount, M. J., Miksis, M. J. & Davis, S. H. 2012 Fluid flow beneath a semipermeable membrane during drying processes. Phys. Rev. E 85, 016330.CrossRefGoogle ScholarPubMed
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1986 Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Constantin, D., Ollinger, C., Vogel, M. & Salditt, T. 2005 Electric field unbinding of solid-supported lipid multilayers. Eur. Phys. J. E 18, 273278.Google Scholar
Craster, R. V. & Matar, O. K. 2005 Electrically induced pattern formation in thin leaky dielectric films. Phys. Fluids 17 (3), 032104.Google Scholar
Feng, J. Q. & Beard, K. V. 1991 Three-dimenionsional oscillation characteristics of electrostatistically deformed drops. J. Fluid Mech. 227, 429447.CrossRefGoogle Scholar
Fernandez de la Mora, J. 2007 The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. 39, 217243.Google Scholar
Hosoi, A. E. & Mahadevan, L. 2004 Peeling, healing, and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93, 137802.CrossRefGoogle Scholar
Lacoste, D., Lagomarsino, M. C. & Joanny, J. F. 2007 Fluctuations of a driven membrane in an electrolyte. Europhys. Lett. 77, 18006.CrossRefGoogle Scholar
Lacoste, D., Menon, G. I., Bazant, M. Z. & Joanny, J. F. 2009 Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane. Eur. Phys. J. E 28, 243264.Google Scholar
Le Berre, M., Yamada, A., Reck, L., Chen, Y. & Baigl, D. 2008 Electroformation of giant phospholipid vesicles on a silicon substrate: advantages of controllable surface properties. Langmuir 24, 26432649.CrossRefGoogle ScholarPubMed
Lecuyer, S., Fragneto, G. & Charitat, T. 2006 Effect of an electric field on a floating lipid bilayer: a neutron reflectivity study. Eur. Phys. J. E 21, 153159.Google Scholar
Maldarelli, C. & Jain, R. K. 1982 The linear, hydrodynamic stability of an interfacially perturbed, transversely isotropic, thin, planar viscoelastic film. J. Colloid Interface Sci. 90 (1), 233262.CrossRefGoogle Scholar
Maldarelli, C., Jain, R. K. & Ivanov, I. B. 1980 Stability of symmetric and unsymmetric thin liquid films to short and long wavelength perturbations. J. Colloid Interface Sci. 78 (1), 118126.CrossRefGoogle Scholar
MATLAB,   2012 Version 8.0.0.783 (R2012b). The MathWorks, Inc.Google Scholar
McConnell, L. C.2013 A numerical investigation of the electrohydrodynamics of lipid bilayer vesicles. PhD thesis, Northwestern University, Evanston, IL.Google Scholar
McConnell, L. C., Miksis, M. J. & Vlahovska, P. M. 2013 Vesicle electrohydrodynamics in dc electric fields. IMA J. Appl. Maths 78, 797817.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.CrossRefGoogle Scholar
Pease, L. F. & Russel, W. B. 2002 Linear stability analysis of thin leaky dielectric films subjected to electric fields. J. Non-Newtonian Fluid Mech. 102, 233250.Google Scholar
Riske, K. A. & Dimova, R. 2005 Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys. J. 88, 11431155.CrossRefGoogle ScholarPubMed
Roberts, S. A. & Kumar, S. 2009 AC electrohydrodynamic instabilities in thin liquid films. J. Fluid Mech. 631, 255279.Google Scholar
Roberts, S. A. & Kumar, S. 2010 Electrohydrodynamic instabilities in thin liquid trilayer films. Phys. Fluids 22, 122012.CrossRefGoogle Scholar
Sadik, M. M., Li, J., Shan, J. W., Shreiber, D. I. & Lin, H. 2011 Vesicle deformation and poration under strong dc electric fields. Phys. Rev. E 83, 066316.CrossRefGoogle ScholarPubMed
Schaffer, E., Thurn-Albrecht, T., Russell, T. & Steiner, U. 2000 Electrically induced structure formation and pattern transfer. Nature 603, 874877.CrossRefGoogle Scholar
Schwalbe, J. T., Vlahovska, P. M. & Miksis, M. 2011 Lipid membrane instability driven by capacitive charging. Phys. Fluids 23, 04170.CrossRefGoogle Scholar
Seifert, U. 1995 The concept of effective tension for fluctuating vesicles. Z. Phys. B 97, 299309.Google Scholar
Seiwert, J., Miksis, M. J. & Vlahovska, P. M. 2012 Stability of biomimetic membranes in DC electric fields. J. Fluid Mech. 706, 5870.Google Scholar
Seiwert, J. & Vlahovska, P. M. 2013 Instability of a fluctuating membrane driven by an ac electric field. Phys. Rev. E 87, 022713.Google Scholar
Sens, P. & Isambert, H. 2002 Undulation instability of lipid membranes under an electric field. Phys. Rev. Lett. 88, 128102.Google Scholar
van Swaay, D. & deMello, A. 2013 Microfluidic methods for forming liposomes. Lab on a Chip 13, 752767.CrossRefGoogle ScholarPubMed
Thaokar, R. M. & Kumaran, V. 2005 Electrohydrodynamic instability of the interface between two fluids confined in a channel. Phys. Fluids 17, 084104.Google Scholar
Tornberg, A.-K. & Shelley, M. J. 2004 Simulating the dynamics and interactions of flexible fibers in Stokes flows. J. Comput. Phys. 196, 840.CrossRefGoogle Scholar
Veerapaneni, S. K., Gueffier, D., Zorin, D. & Biros, G. 2009 A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2d. J. Comput. Phys. 228 (7), 23342353.CrossRefGoogle Scholar
Weaver, J. C. & Chizmadzhev, Y. A. 1996 Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41, 135160.Google Scholar
Wu, N. & Russel, W. B. 2009 Micro- and nano-patterns created via electrohydrodynamic instabilities. Nanotoday 4, 180192.Google Scholar
Zhang, J., Zahn, J. D., Tan, W. & Lin, H. 2013 A transient solution for vesicle electrodeformation and relaxation. Phys. Fluids 25, 071903.Google Scholar
Ziebert, F., Bazant, M. Z. & Lacoste, D. 2010 Effective zero-thickness model for a conductive membrane driven by an electric field. Phys. Rev. E 81, 031912.Google Scholar
Ziebert, F. & Lacoste, D. 2010 A Poisson-Boltzmann approach for a lipid membrane in an electric field. New J. Phys. 12, 095002.Google Scholar
Ziebert, F. & Lacoste, D. 2011 A planar lipid bilayer in an electric field: membrane instability, flow field, and electrical impedance. Adv. Planar Lipid Bilayers Liposomes 14, 6395.Google Scholar