Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T04:21:37.164Z Has data issue: false hasContentIssue false

Linear stability of shallow morphodynamic flows

Published online by Cambridge University Press:  12 April 2021

Jake Langham*
Affiliation:
School of Mathematics, Fry Building, University of Bristol, BristolBS8 1UG, UK School of Earth Sciences, Wills Memorial Building, University of Bristol, BristolBS8 1RJ, UK
Mark J. Woodhouse
Affiliation:
School of Earth Sciences, Wills Memorial Building, University of Bristol, BristolBS8 1RJ, UK
Andrew J. Hogg
Affiliation:
School of Mathematics, Fry Building, University of Bristol, BristolBS8 1UG, UK
Jeremy C. Phillips
Affiliation:
School of Earth Sciences, Wills Memorial Building, University of Bristol, BristolBS8 1RJ, UK
*
Email address for correspondence: j.langham@bristol.ac.uk

Abstract

It is increasingly common for models of shallow-layer overland flows to include equations for the evolution of the underlying bed (morphodynamics) and the motion of an associated sedimentary phase. We investigate the linear stability properties of these systems in considerable generality. Naive formulations of the morphodynamics, featuring exchange of sediment between a well-mixed suspended load and the bed, lead to mathematically ill-posed governing equations. This is traced to a singularity in the linearised system at Froude number ${\textit {Fr}} = 1$ that causes unbounded unstable growth of short-wavelength disturbances. The inclusion of neglected physical processes can restore well posedness. Turbulent momentum diffusion (eddy viscosity) and a suitably parametrised bed load sediment transport are shown separately to be sufficient in this regard. However, we demonstrate that such models typically inherit an associated instability that is absent from non-morphodynamic settings. Implications of our analyses are considered for simple generic closures, including a drag law that switches between fluid and granular behaviour, depending on the sediment concentration. Steady morphodynamic flows bifurcate into two states: dilute flows, which are stable at low ${\textit {Fr}}$, and concentrated flows which are always unstable to disturbances in concentration. By computing the growth rates of linear modes across a wide region of parameter space, we examine in detail the effects of specific model parameters including the choices of sediment erodibility, eddy viscosity and bed load flux. These analyses may be used to inform the ongoing development of operational models in engineering and geosciences.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ancey, C. 2001 Debris flows and related phenomena. In Geomorphological Fluid Mechanics (ed. N.J. Balmforth & A. Provenzale), chap. 21, pp. 528–547. Springer.CrossRefGoogle Scholar
Balmforth, N.J. & Mandre, S. 2004 Dynamics of roll waves. J. Fluid Mech. 514, 133.CrossRefGoogle Scholar
Balmforth, N.J. & Vakil, A. 2012 Cyclic steps and roll waves in shallow water flow over an erodible bed. J. Fluid Mech. 695, 3562.CrossRefGoogle Scholar
Baloga, S.M. & Bruno, B.C. 2005 Origin of transverse ridges on the surfaces of catastrophic mass flow deposits on the Earth and Mars. J. Geophys. Res. Planet. 110 (E5), e05007.CrossRefGoogle Scholar
Benkhaldoun, F., Seaïd, M. & Sahmim, S. 2011 Mathematical development and verification of a finite volume model for morphodynamic flow applications. Adv. Appl. Math. Mech. 3 (4), 470492.CrossRefGoogle Scholar
Bohorquez, P. & Ancey, C. 2015 Stochastic-deterministic modeling of bed load transport in shallow water flow over erodible slope: Linear stability analysis and numerical simulation. Adv. Water Res. 83, 3654.CrossRefGoogle Scholar
Cao, Z., Pender, G. & Carling, P. 2006 Shallow water hydrodynamic models for hyperconcentrated sediment-laden floods over erodible bed. Adv. Water Resour. 29 (4), 546557.CrossRefGoogle Scholar
Cao, Z., Pender, G., Wallis, S. & Carling, P. 2004 Computational dam-break hydraulics over erodible sediment bed. ASCE J. Hydraul. Engng 130 (7), 689703.CrossRefGoogle Scholar
Cao, Z., Xia, C., Pender, G. & Liu, Q. 2017 Shallow water hydro-sediment-morphodynamic equations for fluvial processes. ASCE J. Hydraul. Engng 143 (5), 02517001.CrossRefGoogle Scholar
Chang, H.-C., Demekhin, E.A. & Kalaidin, E. 2000 Coherent structures, self-similarity, and universal roll wave coarsening dynamics. Phys. Fluids 12 (9), 22682278.CrossRefGoogle Scholar
Chavarrías, V., Schielen, R., Ottevanger, W. & Blom, A. 2019 Ill posedness in modelling two-dimensional morphodynamic problems: effects of bed slope and secondary flow. J. Fluid Mech. 868, 461500.CrossRefGoogle Scholar
Chavarrías, V., Stecca, G. & Blom, A. 2018 Ill-posedness in modeling mixed sediment river morphodynamics. Adv. Water Res. 114, 219235.CrossRefGoogle Scholar
Cheng, N.-S. 1997 Simplified settling velocity formula for sediment particle. ASCE J. Hydraul. Engng 123 (2), 149152.CrossRefGoogle Scholar
Coleman, S.E. & Fenton, J.D. 2000 Potential-flow instability theory and alluvial stream bed forms. J. Fluid Mech. 418, 101117.CrossRefGoogle Scholar
Colombini, M. 2004 Revisiting the linear theory of sand dune formation. J. Fluid Mech. 502, 116.CrossRefGoogle Scholar
Colombini, M. & Stocchino, A. 2005 Coupling or decoupling bed and flow dynamics: fast and slow sediment waves at high froude numbers. Phys. Fluids 17 (3), 036602.CrossRefGoogle Scholar
Colombini, M. & Stocchino, A. 2008 Finite-amplitude river dunes. J. Fluid Mech. 611, 283306.CrossRefGoogle Scholar
Colombini, M. & Stocchino, A. 2011 Ripple and dune formation in rivers. J. Fluid Mech. 673, 121131.CrossRefGoogle Scholar
Cordier, S., Le, M.H. & Morales de Luna, T. 2011 Bedload transport in shallow water models: why splitting (may) fail, how hyperbolicity (can) help. Adv. Water Res. 34 (8), 980989.CrossRefGoogle Scholar
Cornish, V. 1934 Ocean waves and Kindred Geophysical Phenomena. Cambridge University Press.Google Scholar
Coussot, P. 1994 Steady, laminar, flow of concentrated mud suspensions in open channel. J. Hydraul. Res. 32 (4), 535559.CrossRefGoogle Scholar
Craya, A. 1952 The criterion for the possibility of roll-wave formation. In Gravity Waves, pp. 141–151. NBS.Google Scholar
Davies, T.R., Phillips, C.J., Pearce, A.J. & Zhang, X.B. 1992 Debris flow behaviour—an integrated overview. In Erosion, Debris Flows and Environment in Mountain Regions (ed. D.E. Walling, T.R. Davies & B. Hasholt), vol. 209, pp. 217–225. IAHS Publication.Google Scholar
Davies, T.R.H. 1986 Large debris flows: a macro-viscous phenomenon. Acta Mech. 63 (1–4), 161178.CrossRefGoogle Scholar
Doyle, E.E., Cronin, S.J., Cole, S.E. & Thouret, J.-C. 2010 The coalescence and organization of lahars at Semeru volcano, Indonesia. Bull. Volcanol. 72 (8), 961970.CrossRefGoogle Scholar
Dressler, R.F. 1949 Mathematical solution of the problem of roll-waves in inclined open channels. Commun. Pure Appl. Maths 2 (2–3), 149194.CrossRefGoogle Scholar
Dressler, R.F. & Pohle, F.V. 1953 Resistance effects on hydraulic instability. Commun. Pure Appl. Maths 6 (1), 9396.CrossRefGoogle Scholar
Engelund, F. 1970 Instability of erodible beds. J. Fluid Mech. 42 (2), 225244.CrossRefGoogle Scholar
Engelund, F. & Fredsøe, J. 1982 Sediment ripples and dunes. Annu. Rev. Fluid Mech. 14 (1), 1337.CrossRefGoogle Scholar
Farr, R.S. & Groot, R.D. 2009 Close packing density of polydisperse hard spheres. J. Chem. Phys. 131 (24), 244104.CrossRefGoogle ScholarPubMed
Forterre, Y. & Pouliquen, O. 2003 Long-surface-wave instability in dense granular flows. J. Fluid Mech. 486, 2150.CrossRefGoogle Scholar
Gomez, B. 1991 Bedload transport. Earth-Sci. Rev. 31 (2), 89132.CrossRefGoogle Scholar
Gray, J.M.N.T. & Edwards, A.N. 2014 A depth-averaged $\mu (I)$-rheology for shallow granular free-surface flows. J. Fluid Mech. 755, 503534.CrossRefGoogle Scholar
Guazzelli, É., Pouliquen, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.CrossRefGoogle Scholar
Hogg, A.J. & Pritchard, D. 2004 The effects of hydraulic resistance on dam-break and other shallow inertial flows. J. Fluid Mech. 501, 179212.CrossRefGoogle Scholar
Hudson, J. & Sweby, P.K. 2005 A high-resolution scheme for the equations governing 2D bed-load sediment transport. Intl J. Numer. Meth. Fluids 47 (10–11), 10851091.CrossRefGoogle Scholar
Hungr, O. 2000 Analysis of debris flow surges using the theory of uniformly progressive flow. Earth Surf. Proc. Land. 25 (5), 483495.3.0.CO;2-Z>CrossRefGoogle Scholar
Hungr, O., McDougall, S. & Bovis, M. 2005 Entrainment of material by debris flows. In Debris-Flow Hazards and Related Phenomena, pp. 135–158. Springer.CrossRefGoogle Scholar
Hwang, S.-H. & Chang, H.-C. 1987 Turbulent and inertial roll waves in inclined film flow. Phys. Fluids 30 (5), 12591268.CrossRefGoogle Scholar
Iverson, R.M. 1997 The physics of debris flows. Rev. Geophys. 35 (3), 245296.CrossRefGoogle Scholar
Iverson, R.M. & Ouyang, C. 2015 Entrainment of bed materials by earth-surface mass flows: review and reformulation of depth-integrated theory. Rev. Geophys. 53, 2758.CrossRefGoogle Scholar
Iverson, R.M., Reid, M.E., Iverson, N.R., LaHusen, R.G., Logan, M., Mann, J.E. & Brien, D.L. 2000 Acute sensitivity of landslide rates to initial soil porosity. Science 290 (5491), 513516.CrossRefGoogle ScholarPubMed
Ivrii, V.Y. & Petkov, V.M. 1974 Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well-posed. Russ. Math. Surv. 29 (5), 170.CrossRefGoogle Scholar
Jeffreys, H. 1925 The flow of water in an inclined channel of rectangular section. Phil. Mag. 49 (293), 793807.CrossRefGoogle Scholar
Joseph, D.D. & Saut, J.C. 1990 Short-wave instabilities and ill-posed initial-value problems. Theor. Comput. Fluid Dyn. 1 (4), 191227.CrossRefGoogle Scholar
Juez, C., Murillo, J. & García-Navarro, P. 2014 A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed. Adv. Water Res. 71, 93109.CrossRefGoogle Scholar
Keulegan, G.H. & Patterson, G.W. 1940 A criterion for instability of flow in steep channels. Trans. Am. Geophys. Union 21 (2), 594596.CrossRefGoogle Scholar
Kozyrakis, G.V., Delis, A.I., Alexandrakis, G. & Kampanis, N.A. 2016 Numerical modeling of sediment transport applied to coastal morphodynamics. Appl. Numer. Maths 104, 3046.CrossRefGoogle Scholar
Lajeunesse, E., Malverti, L. & Charru, F. 2010 Bed load transport in turbulent flow at the grain scale: experiments and modeling. J. Geophys. Res. Earth 115 (F4), F04001.Google Scholar
Langendoen, E.J., Mendoza, A., Abad, J.D., Tassi, P., Wang, D., Ata, R., El kadi Abderrezzak, K. & Hervouet, J. -M. 2016 Improved numerical modeling of morphodynamics of rivers with steep banks. Adv. Water Resour. 93, 414.CrossRefGoogle Scholar
Lanzoni, S., Siviglia, A., Frascati, A. & Seminara, G. 2006 Long waves in erodible channels and morphodynamic influence. Water Resour. Res. 42 (6), W06D17.CrossRefGoogle Scholar
Li, S. & Duffy, C.J. 2011 Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers. Water Resour. Res. 47 (3), W03508.CrossRefGoogle Scholar
Liu, K. & Mei, C.C. 1994 Roll waves on a layer of a muddy fluid flowing down a gentle slope—a Bingham model. Phys. Fluids 6 (8), 25772590.CrossRefGoogle Scholar
Liu, X. & Beljadid, A. 2017 A coupled numerical model for water flow, sediment transport and bed erosion. Comput. Fluids 154, 273284.CrossRefGoogle Scholar
Liu, X., Infante, S., Julio, Á. & Mohammadian, A. 2015 A coupled two-dimensional numerical model for rapidly varying flow, sediment transport and bed morphology. J. Hydraul. Res. 53 (5), 609621.CrossRefGoogle Scholar
Lyn, D.A. 1987 Unsteady sediment-transport modeling. ASCE J. Hydraul. Engng 113 (1), 115.CrossRefGoogle Scholar
Lyn, D.A. & Altinakar, M. 2002 St. Venant–Exner equations for near-critical and transcritical flows. ASCE J. Hydraul. Engng 128 (6), 579587.CrossRefGoogle Scholar
Macedonio, G. & Pareschi, M.T. 1992 Numerical simulation of some lahars from Mount St. Helens. J. Volcanol. Geotherm. Res. 54 (1–2), 6580.CrossRefGoogle Scholar
Meyer-Peter, E. & Müller, R. 1948 Formulas for bed-load transport. In IAHSR 2nd meeting, Stockholm, Appendix 2. IAHR.Google Scholar
Murillo, J. & García-Navarro, P. 2010 An Exner-based coupled model for two-dimensional transient flow over erodible bed. J. Comput. Phys. 229 (23), 87048732.CrossRefGoogle Scholar
Needham, D.J. & Merkin, J.H. 1984 On roll waves down an open inclined channel. Proc. R. Soc. Lond. A 394 (1807), 259278.Google Scholar
Ng, C.-O. & Mei, C.C. 1994 Roll waves on a shallow layer of mud modelled as a power-law fluid. J. Fluid Mech. 263, 151184.CrossRefGoogle Scholar
Pascal, J.P. 2006 Instability of power-law fluid flow down a porous incline. J. Non-Newtonian Fluid Mech. 133 (2–3), 109120.CrossRefGoogle Scholar
Pierson, T.C. 1986 Flow behavior of channelized debris flows Mount St. Helens Washington. In Hillslope Processes (ed. A. Abrahams), pp. 269–296. Routledge.CrossRefGoogle Scholar
Pierson, T.C. 2005 Hyperconcentrated flow-transitional process between water flow and debris flow. In Debris-Flow Hazards and Related Phenomena (ed. M. Jakob & O. Hungr), pp. 159–202. Springer.CrossRefGoogle Scholar
Pierson, T.C. & Scott, K.M. 1985 Downstream dilution of a lahar: Transition from debris flow to hyperconcentrated streamflow. Water Resour. Res. 21 (10), 15111524.CrossRefGoogle Scholar
Pouliquen, O. & Forterre, Y. 2002 Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.CrossRefGoogle Scholar
Razis, D., Edwards, A.N., Gray, J.M.N.T. & van der Weele, K. 2014 Arrested coarsening of granular roll waves. Phys. Fluids 26 (12), 123305.CrossRefGoogle Scholar
Richards, K.J. 1980 The formation of ripples and dunes on an erodible bed. J. Fluid Mech. 99 (3), 597618.CrossRefGoogle Scholar
Richardson, J.F. & Zaki, W.N. 1954 Sedimentation and fluidisation. Part 1. Trans. Inst. Chem. Engrs 32, S82S100.Google Scholar
Santiso, E. & Müller, E.A. 2002 Dense packing of binary and polydisperse hard spheres. Mol. Phys. 100 (15), 24612469.CrossRefGoogle Scholar
Seminara, G. 2010 Fluvial sedimentary patterns. Annu. Rev. Fluid Mech. 42, 4366.CrossRefGoogle Scholar
Simpson, G. & Castelltort, S. 2006 Coupled model of surface water flow, sediment transport and morphological evolution. Comput. Geosci. 32 (10), 16001614.CrossRefGoogle Scholar
Siviglia, A., Stecca, G., Vanzo, D., Zolezzi, G., Toro, E.F. & Tubino, M. 2013 Numerical modelling of two-dimensional morphodynamics with applications to river bars and bifurcations. Adv. Water Res. 52, 243260.CrossRefGoogle Scholar
Slootman, A. & Cartigny, M.J.B. 2020 Cyclic steps: Review and aggradation-based classification. Earth-Sci. Rev. 201, 102949.CrossRefGoogle Scholar
Soulsby, R. 1997 Dynamics of Marine Sands. Thomas Telford.Google Scholar
Spearman, J. & Manning, A.J. 2017 On the hindered settling of sand-mud suspensions. Ocean Dyn. 67 (3), 465483.CrossRefGoogle Scholar
Stecca, G., Siviglia, A. & Blom, A. 2014 Mathematical analysis of the Saint–Venant–Hirano model for mixed-sediment morphodynamics. Water Resour. Res. 50 (10), 75637589.CrossRefGoogle Scholar
Swartenbroekx, C., Zech, Y. & Soares-Frazão, S. 2013 Two-dimensional two-layer shallow water model for dam break flows with significant bed load transport. Intl J. Numer. Meth. Fluids 73 (5), 477508.CrossRefGoogle Scholar
Thual, O., Plumerault, L.-R. & Astruc, D. 2010 Linear stability of the 1D Saint–Venant equations and drag parameterizations. J. Hydraul. Res. 48 (3), 348353.CrossRefGoogle Scholar
Trowbridge, J.H. 1987 Instability of concentrated free surface flows. J. Geophys. Res. Oceans 92 (C9), 95239530.CrossRefGoogle Scholar
Woodhouse, M.J., Thornton, A.R., Johnson, C.G., Kokelaar, B.P. & Gray, J.M.N.T. 2012 Segregation-induced fingering instabilities in granular free-surface flows. J. Fluid Mech. 709, 543580.CrossRefGoogle Scholar
Wu, W. & Wang, S.S. 2007 One-dimensional modeling of dam-break flow over movable beds. ASCE J. Hydraul. Engng 133 (1), 4858.CrossRefGoogle Scholar
Xia, J., Lin, B., Falconer, R.A. & Wang, G. 2010 Modelling dam-break flows over mobile beds using a 2D coupled approach. Adv. Water Resour. 33 (2), 171183.CrossRefGoogle Scholar
Yue, Z., Cao, Z., Li, X. & Che, T. 2008 Two-dimensional coupled mathematical modeling of fluvial processes with intense sediment transport and rapid bed evolution. Sci. China G 51 (9), 14271438.CrossRefGoogle Scholar
Zanré, D.D.L. & Needham, D.J. 1994 On the hyperbolic nature of the equations of alluvial river hydraulics and the equivalence of stable and energy dissipating shocks. Geophys. Astrophys. Fluid Dyn. 76 (1–4), 193222.CrossRefGoogle Scholar
Zanuttigh, B. & Lamberti, A. 2004 Analysis of debris wave development with one-dimensional shallow-water equations. ASCE J. Hydraul. Engng 130 (4), 293304.CrossRefGoogle Scholar
Zanuttigh, B. & Lamberti, A. 2007 Instability and surge development in debris flows. Rev. Geophys. 45 (3), rG3006.CrossRefGoogle Scholar
Zayko, J. & Eglit, M. 2019 Stability of downslope flows to two-dimensional perturbations. Phys. Fluids 31 (8), 086601.CrossRefGoogle Scholar