Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T03:43:12.313Z Has data issue: false hasContentIssue false

Harmonic solutions for polygonal hydraulic jumps in thin fluid films

Published online by Cambridge University Press:  03 September 2015

N. Rojas*
Affiliation:
Manchester Centre for Nonlinear Dynamics, and School of Mathematics, The University of Manchester, Manchester M13 9PL, UK
E. Tirapegui
Affiliation:
Departamento de Física, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Avenida Blanco Encalada 2008, Santiago, Chile
*
Email address for correspondence: nicolas.rojas@email.com

Abstract

This article contains numerical and theoretical results on the circular and polygonal hydraulic jumps in the framework of inertial lubrication theory. The free surface and velocity fields are computed along with cross-sections of the vorticity and pressure, in agreement with experimental data. The forces that drive and resist the instability are identified with the radial shear force, the azimuthal surface tension and the hydrostatic azimuthal force, in addition to a nonlinear term in the radial coordinate. Periodic solutions are obtained from the first orders of a perturbation theory by considering azimuthal symmetries. The thresholds of the instability are defined at closed jumps for discontinuous solutions and at one-sided hydraulic jumps for continuous curves that conserve fluid mass density.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguiar, A. C. B., Read, P. L., Wordsworth, R. D., Salter, T. & Yamazaki, Y. H. 2010 A laboratory model of Saturn’s north polar hexagon. Icarus 206, 755763.CrossRefGoogle Scholar
Arakeri, J. H. & Rao, K. P. A. 1996 On radial film flow on a horizontal surface and the circular hydraulic jump. J. Indian Inst. Sci. 76, 7391.Google Scholar
Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150155.Google Scholar
Bergmann, R., Tophøj, L., Homan, T. A. M., Hersen, P., Andersen, A. & Bohr, T. 2011 Polygon formation and surface flow on a rotating fluid surface. J. Fluid Mech. 679, 415431.Google Scholar
Bestehorn, M. 2013 Laterally extended thin liquid films with inertia under external vibrations. Phys. Fluids 25, 114106.Google Scholar
Bestehorn, M., Han, Q. & Oron, A. 2013 Nonlinear pattern formation in thin liquid films under external vibrations. Phys. Rev. E 88, 023025.Google Scholar
Bohr, T., Dimon, P. & Putkaradze, V. 1993 Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 254, 635648.Google Scholar
Bohr, T., Ellegaard, C., Hansen, A. E. & Haaning, A. 1996 Hydraulic jumps, flow separation and wave breaking: an experimental study. Physica B 228, 110.Google Scholar
Brechet, Y. & Néda, Z. 1998 On the circular hydraulic jump. Am. J. Phys. 67 (8), 723731.Google Scholar
Bush, J. W. M. & Aristoff, J. M. 2003 The influence of surface tension on the circular hydraulic jump. J. Fluid Mech. 489, 229238.CrossRefGoogle Scholar
Bush, J. W. M., Aristoff, J. M. & Hosoi, A. E. 2006 An experimental investigation of the stability of the circular hydraulic jump. J. Fluid Mech. 558, 3352.CrossRefGoogle Scholar
Cerda, E. A. & Tirapegui, E. L. 1998 Faraday’s instability in viscous fluid. J. Fluid Mech. 368, 195228.Google Scholar
Chanson, H. 2009 Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. (B/Fluids) 28, 191210.CrossRefGoogle Scholar
Craik, A. D. D., Latham, R. C., Fawkes, M. J. & Gribbon, P. W. F. 1981 The circular hydraulic jump. J. Fluid Mech. 112, 347362.Google Scholar
Duchesne, A., Savaro, C., Lebon, L., Pirat, C. & Limat, L. 2013 Multiple rotations of a drop rolling inside a horizontal circular hydraulic jump. Europhys. Lett. 102 (6), 64001.Google Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69 (3), 865929.Google Scholar
Ellegaard, C., Hansen, A. E., Haaning, A. & Bohr, T. 1996 Experimental results on flow separation and transitions in the circular hydraulic jump. Phys. Scr. T 67, 105110.Google Scholar
Ellegaard, C., Hansen, A. E., Haaning, A., Hansen, K., Marcussen, A., Bohr, T., Hansen, J. L. & Watanabe, S. 1998 Creating corners in kitchen sinks. Nature 392, 767768.Google Scholar
Ellegaard, C., Hansen, A. E., Haaning, A., Hansen, K., Marcussen, A., Bohr, T., Hansen, J. L. & Watanabe, S. 1999 Cover illustration: polygonal hydraulic jumps. Nonlinearity 12, 17.Google Scholar
Foglizzo, T., Masset, F., Guilet, J. & Durant, G. 2012 Shallow water analogue of the standing accretion shock instability: experimental demonstration and a two-dimensional model. Phys. Rev. Lett. 108, 051103.Google Scholar
Godfrey, D. A. 1988 A hexagonal feature around Saturn’s north pole. Icarus 76 (2), 335356.Google Scholar
Goldstein, H., Poole, C. P. & Safko, J. L. 1990 Classical Mechanics. Addison-Wesley.Google Scholar
Guo, W., Labrosse, G. & Narayanan, R. 2012 The Application of the Chebyshev-Spectral Method in Transport Phenomena. Springer.Google Scholar
Hansen, S. H., Hørluck, S., Zauner, D., Dimon, P., Ellegaard, C. & Creagh, S. C. 1997 Geometric orbits of surface waves from a circular hydraulic jump. Phys. Rev. Lett. E 55 (6), 70487061.Google Scholar
Hondzo, M. 2012 Microbial and ecological fluid dynamics. In Handbook of Environmental Fluid Dynamics, vol. I (ed. Fernando, H. J. S.), pp. 169176. Taylor & Francis.Google Scholar
Jannes, G., Piquet, R., Maïssa, P., Mathis, C. & Rousseaux, G. 2011 Experimental demonstration of the supersonic–subsonic bifurcation in the circular jump: a hydrodynamic white hole. Phys. Rev. E 83, 056312.Google Scholar
Jansson, T. R. N., Haspang, M. P., Jensen, K. H., Hersen, P. & Bohr, T. 2006 Polygons on a rotating fluid surface. Phys. Rev. Lett. 96, 174502.Google Scholar
Kasimov, A. R. 2008 A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue. J. Fluid Mech. 601, 189198.Google Scholar
Kate, R. P., Das, P. K. & Chakraborty, S. 2007 Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface. J. Fluid Mech. 537, 247263.Google Scholar
Kossin, J. P. & Schubert, W. H. 2001 Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci. 58, 21962209.Google Scholar
Labousse, M. & Bush, J. W. M. 2013 The hydraulic bump: the surface signature of a plunging jet. Phys. Fluids 25, 094104.Google Scholar
Liu, X., Lienhard, J. H. & Lombara, J. S. 1991 Convective heat transfer by impingement of circular liquid jets. J. Heat Transfer 113, 571582.Google Scholar
Martens, E. A., Watanabe, S. & Bohr, T. 2012 Model for polygonal hydraulic jumps. Phys. Rev. E 85, 036316.Google Scholar
Mathur, M., DasGupta, R., Selvi, N. R., John, N. S., Kulkarni, G. U. & Govindarajan, R. 2007 Gravity-free hydraulic jumps and metal femtoliter cups. Phys. Rev. Lett. 98, 164502.CrossRefGoogle ScholarPubMed
Passandideh-Fard, M., Teymourtash, A. R. & Khavari, M. 2011 Numerical study of circular hydraulic jump using volume-of-fluid method. J. Fluids Eng. 133, 011401.Google Scholar
Rao, A. & Arakeri, J. H. 2001 Wave structure in the radial film flow with a circular hydraulic jump. Exp. Fluids 31, 542549.Google Scholar
Ray, A. K. & Bhattacharjee, J. K. 2007 Standing and traveling waves in the shallow-water circular hydraulic jump. Phys. Lett. A 371 (3), 241248.Google Scholar
Reynolds, O. 1886 On the theory of lubrication and its application to Mr Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Proc. R. Soc. Lond. 177, 157234.Google Scholar
Roberts, A. J. 1996 Low-dimensional models of thin fluid dynamics. Phys. Lett. A 212, 6371.Google Scholar
Rojas, N. O., Argentina, M., Cerda, E. A. & Tirapegui, E. 2009 Nonlinear Faraday waves at low Reynolds numbers. J. Mol. Liq. 147, 166169.Google Scholar
Rojas, N. O., Argentina, M., Cerda, E. & Tirapegui, E. 2010 Inertial lubrication theory. Phys. Rev. Lett. 104, 187801.CrossRefGoogle ScholarPubMed
Rojas, N., Argentina, M. & Tirapegui, E. 2013 A progressive correction to the circular hydraulic jump scaling. Phys. Fluids 25, 042105.Google Scholar
Rousseaux, G., Maïssa, P., Mathis, C., Coullet, P., Philbin, T. G. & Leonhardt, U. 2010 Horizon effects with surface waves on moving water. New J. Phys. 12, 095018.Google Scholar
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357369.Google Scholar
Schubert, W. H., Montgomery, M. T., Talf, R. K., Guinn, T. A., Fulton, S. R., Kossin, J. P. & Edwards, J. P. 1999 Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci. 56, 11971223.Google Scholar
Shkadov, V. Y. 1967 Wave conditions in the flow of a thin layer of a viscous liquid under the action of gravity. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 1, 4350.Google Scholar
Tani, I. 1949 Water jump in the boundary layer. J. Phys. Soc. Japan 4, 212215.Google Scholar
Tophøj, L., Mougel, J., Bohr, T. & Fabre, D. 2013 Rotating polygon instability of a swirling free surface flow. Phys. Rev. Lett. 110, 194502.Google Scholar
Vatistas, G. H. 1990 A note on liquid vortex sloshing and Kelvin’s equilibria. J. Fluid Mech. 217, 241248.Google Scholar
Volovik, G. E. 2005 Hydraulic jump as a white hole. J. Expl Theor. Phys. Lett. 82 (10), 624627.Google Scholar
Watson, E. J. 1964 The radial spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 481499.Google Scholar
Widnall, S. E. & Sullivan, J. P. 1973 On the stability of vortex rings. Proc. R. Soc. Lond. A 332 (1590), 335353.Google Scholar
Widnall, S. E. & Tsai, C.-Y. 1977 The stability of the thin vortex ring of constant vorticity. Proc. R. Soc. Lond. A 287 (1344), 273305.Google Scholar