Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T02:37:42.299Z Has data issue: false hasContentIssue false

Expanding the QR space to three dimensions

Published online by Cambridge University Press:  10 December 2009

BEAT LÜTHI*
Affiliation:
International Collaboration for Turbulence Research Institute of Environmental Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 15, 8093 Zurich, Switzerland
MARKUS HOLZNER
Affiliation:
International Collaboration for Turbulence Research Institute of Environmental Engineering, ETH Zurich, Wolfgang-Pauli-Strasse 15, 8093 Zurich, Switzerland
ARKADY TSINOBER
Affiliation:
International Collaboration for Turbulence Research School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
*
Email address for correspondence: luethi@ifu.baug.ethz.ch

Abstract

The two-dimensional space spanned by the velocity gradient invariants Q and R is expanded to three dimensions by the decomposition of R into its strain production −1/3sijsjkski and enstrophy production 1/4ωiωjsij terms. The {Q; R} space is a planar projection of the new three-dimensional representation. In the {Q; −sss; ωωs} space the Lagrangian evolution of the velocity gradient tensor Aij is studied via conditional mean trajectories (CMTs) as introduced by Martín et al. (Phys. Fluids, vol. 10, 1998, p. 2012). From an analysis of a numerical data set for isotropic turbulence of Reλ ~ 434, taken from the Johns Hopkins University (JHU) turbulence database, we observe a pronounced cyclic evolution that is almost perpendicular to the QR plane. The relatively weak cyclic evolution in the QR space is thus only a projection of a much stronger cycle in the {Q; −sss; ωωs} space. Further, we find that the restricted Euler (RE) dynamics are primarily counteracted by the deviatoric non-local part of the pressure Hessian and not by the viscous term. The contribution of the Laplacian of Aij, on the other hand, seems the main responsible for intermittently alternating between low and high intensity Aij states.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashurst, W., Kerstein, A. & Kerr, R. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30 (8) 23432353.CrossRefGoogle Scholar
Biferale, L., Chevillard, L., Meneveau, C. & Toschi, F. 2007 Multiscale model of gradient evolution in turbulent flows. Phys. Rev. Lett. 98 214501.Google Scholar
Cantwell, B. 1992 Exact solution of a restricted euler equation for the velocity-gradient tensor. Phys. Fluids 4 (4) 782793.Google Scholar
Cao, N. & Chen, S. 1999 Statistics and structures of pressure in isotropic turbulence. Phys. Fluids 14 25382541.Google Scholar
Chacín, J. M. & Cantwell, B. J. 2000 Dynamics of a low Reynolds number turbulent boundary layer. J. Fluid Mech. 404 87115.CrossRefGoogle Scholar
Chertkov, M., Pumir, A. & Shraiman, B. I. 1999 Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids 11 (8) 23942410.CrossRefGoogle Scholar
Chevillard, L., Meneveau, C., Biferale, L. & Toschi, F. 2008 Modeling the pressure Hessian and viscous Laplacian in turbulence: comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys. Fluids 20 101504.Google Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Galanti, B. & Tsinober, A. 2000 Self-amplification of the field of velocity derivatives in quasi-isotropic turbulence. Phys. Fluids 12 (12) 30973099.CrossRefGoogle Scholar
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007 Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Part I. Facilities, methods and some general results. J. Fluid Mech. 589 5781.CrossRefGoogle Scholar
Jeong, E. & Girimaji, S. S. 2003 Velocity-gradient dynamics in turbulence: effect of viscosity and forcing. Theor. Comput. Fluid Dyn. 16 421432.CrossRefGoogle Scholar
Kholmyansky, M., Tsinober, A. & Yorish, S. 2001 Velocity derivatives in the atmospheric surface layer at Re-lambda=104. Phys. Fluids 13 (1) 311314.CrossRefGoogle Scholar
Li, Y., Perlman, E., Wan, M., Yang, Y., Burns, R., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008 A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9 (31) 129.CrossRefGoogle Scholar
Lund, T. S. & Rogers, M. M. 1994 An improved measure of strain state probability in turbulent flows. Phys. Fluids 6 (5) 18381847.CrossRefGoogle Scholar
Lüthi, B., Tsinober, A. & Kinzelbach, W. 2005 Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528 87118.Google Scholar
Martín, J., Dopazo, C. & Valiño, L. 1998 Dynamics of velocity gradient invariants in turbulence: restricted Euler and linear diffusion models. Phys. Fluids 10 (8) 20122025.Google Scholar
Ooi, A., Martín, J., Soria, J. & Chong, M. 1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381 141174.CrossRefGoogle Scholar
Patterson, G. & Orszag, S. 1971 Spectral calculations of isotropic turbulence: efficient removal of aliasing interactions. Phys. Fluids 14 2538–2514.CrossRefGoogle Scholar
Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, A. E. 1994 A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6 (2) 871884.CrossRefGoogle Scholar
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29 435472.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Tsinober, A. 2001 An Informal Introduction to Turbulence. Kluwer Academic.Google Scholar
Tsinober, A., Ortenberg, M. & Shtilman, L. 1999 On depression of nonlinearity in turbulence. Phys. Fluids 11 22912297.CrossRefGoogle Scholar
Vieillefosse, P. 1982 Local interaction between vorticity and shear in a perfect incompressible fluid. Le journal de Physique 43 (6) 837842.Google Scholar