Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T10:59:42.289Z Has data issue: false hasContentIssue false

Depth-integrated equation for large-scale modelling of low-frequency hydroacoustic waves

Published online by Cambridge University Press:  15 April 2013

P. Sammarco*
Affiliation:
Department of Civil and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
C. Cecioni
Affiliation:
Department of Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy
G. Bellotti
Affiliation:
Department of Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy
A. Abdolali
Affiliation:
Department of Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy
*
Email address for correspondence: sammarco@ing.uniroma2.it

Abstract

We present a depth-integrated equation for the mechanics of propagation of low-frequency hydroacoustic waves due to a sudden bottom displacement associated with earthquakes. The model equation can be used for numerical prediction in large-scale domains, overcoming the computational difficulties of three-dimensional models and so creating a solid base for tsunami early warning systems.

Type
Rapids
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chierici, F., Pignagnoli, L. & Embriaco, D. 2010 Modeling of the hydroacoustic signal and tsunami wave generated by seafloor motion including a porous seabed. J. Geophys. Res. 115, C03015.Google Scholar
Ewing, M., Tolstoy, I. & Press, F. 1950 Proposed use of the T phase in Tsunami warning systems. Bull. Seismol. Soc. Am. 40, 5358.CrossRefGoogle Scholar
Givoli, D. 1991 Non-reflecting boundary conditions. J. Comput. Phys. 94 (1), 129.CrossRefGoogle Scholar
Givoli, D. 1992 A numerical-solution procedure for exterior wave problems. Comput. Struct. 43 (1), 7784.CrossRefGoogle Scholar
Kadri, U. & Stiassnie, M. 2012 Acoustic-gravity waves interacting with the shelf break. J. Geophys. Res. 117, C03035.Google Scholar
Mei, C. C., Stiassnie, M & Yue, D. K.-P. 2005 Theory and Applications of Ocean Surface Waves. Part 1: Linear Aspects, Adv. Series in Ocean Engineering, vol. 23. World Scientific.Google Scholar
Nosov, M. A. 1999 Tsunami generation in compressible ocean. Phys. Chem. Earth B 24 (5), 437441.CrossRefGoogle Scholar
Nosov, M. A. & Kolesov, S. V. 2007 Elastic oscillations of water column in the 2003 Tokachi-Oki tsunami source: in-situ measurements and 3-D numerical modelling. Nat. Hazards Earth Syst. Sci. 7 (2), 243249.CrossRefGoogle Scholar
Nosov, M. A., Kolesov, S. V., Denisova, A. V., Alekseev, A. B. & Levin, B. V. 2007 On the near-bottom pressure variations in the region of the 2003 Tokachi-Oki tsunami source. Oceanology 47 (1), 2632.CrossRefGoogle Scholar
Nosov, M. A., Kolesov, S. V., Ostroukhova, A. V., Alekseev, A. B. & Levin, B. V. 2005 Elastic oscillations of water layer in tsunami source. Dokl. Akad. Nauk 404 (2), 255258.Google Scholar
Riccobene, G. 2012 Towards acoustic UHE neutrino detection in the Mediterranean Sea. Nucl. Instrum. Meth. Phys. Res. A 692, 197200.CrossRefGoogle Scholar
Simeone, F. & Viola, S. 2011 The SMO project: a submarine multidisciplinary observatory in deep-sea. Mobile Adhoc and Sensor System International Conference, IEEE-MASS/MARSS, Valencia (Spain), pp. 898–903, ISBN: 978-1-4577-1345-3.Google Scholar
Smith, R. & Sprinks, T. 1975 Scattering of surface waves by conical island. J. Fluid Mech. 72 (2), 373384.CrossRefGoogle Scholar
Stiassnie, M. 2010 Tsunamis and acoustic-gravity waves from underwater earthquakes. J. Engng Maths 67 (1), 2332.CrossRefGoogle Scholar
Yamamoto, T. 1982 Gravity waves and acoustic waves generated by submarine earthquakes. Intl J. Soil Dyn. Earthq. Engng 1 (2), 7582.Google Scholar