Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T04:03:08.474Z Has data issue: false hasContentIssue false

Aspect ratio effect on electroconvection in a suspended liquid crystal film with a rectangular boundary

Published online by Cambridge University Press:  31 August 2017

Xuefei Guo
Affiliation:
Department of Physics, Fudan University, Shanghai 200433, China
Yongkang Le
Affiliation:
Department of Physics, Fudan University, Shanghai 200433, China
Bochao Cao*
Affiliation:
Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
*
Email address for correspondence: cbc@fudan.edu.cn

Abstract

The aspect ratio dependence of the electroconvection phenomenon in a suspended nematic liquid crystal film with a rectangular boundary is investigated. Two-dimensional global stability analysis is carried out on the coupled electrohydrodynamic system to calculate the instability boundary of the phenomenon for different aspect ratios. The calculated critical $R$ number (Rayleigh-like number) shows a rapidly decreasing trend in the low-aspect-ratio region (roughly $\unicode[STIX]{x1D6FE}<1.5$, where $\unicode[STIX]{x1D6FE}$ is defined as the aspect ratio of the film), and then the variation becomes slow until $\unicode[STIX]{x1D6FE}\approx 2.5$, where the critical $R$ number starts to increase slightly. Convective patterns of liquid films with different aspect ratios are also obtained from stability analysis and validated by particle image velocimetry measurement.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, A., Ried, S., Stannarius, R. & Stegemeyer, H. 1997 Electroconvection in smectic C liquid-crystal films visualized by optical anisotropy. Europhys. Lett. 39 (3), 257262.Google Scholar
Binks, D. J. & Mullin, T. 1997 Cell number selection in electrohydrodynamic convection in liquid crystals. Proc. R. Soc. Lond. A 453 (1965), 21092122.Google Scholar
Buka, Á., Éber, N., Pesch, W. & Kramer, L. 2007 Isotropic and anisotropic electroconvection. Phys. Rep. 448 (5), 115132.Google Scholar
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3), 8511112.Google Scholar
Daya, Z. A., Deyirmenjian, V. B. & Morris, S. W. 1999 Electrically driven convection in a thin annular film undergoing circular Couette flow. Phys. Fluids 11 (12), 36133628.Google Scholar
Daya, Z. A., Deyirmenjian, V. B. & Morris, S. W. 2002 Sequential bifurcations in sheared annular electroconvection. Phys. Rev. E 66 (1), R015201.Google Scholar
Daya, Z. A., Morris, S. W. & Bruyn, J. R. 1997 Electroconvection in a suspended fluid film: a linear stability analysis. Phys. Rev. E 55 (3), 26822692.Google Scholar
Faetti, S., Fronzoni, L. & Rolla, P. A. 1983 Static and dynamic behavior of the vortexelectrohydrodynamic instability in freely suspended layers of nematic liquid crystals. J. Chem. Phys. 79 (10), 50545062.Google Scholar
Feiz, M. S., Namin, R. M. & Amjadi, A. 2015 Theory of the liquid film motor. Phys. Rev. E 92, 033002.Google Scholar
Kramer, L. & Pesch, W. 1995 Convection instabilities in nematic liquid crystals. Annu. Rev. Fluid Mech. 27, 515541.Google Scholar
Mao, S. S., Bruyn, J. R., Daya, Z. A. & Morris, S. W. 1996 Boundary-induced wavelength selection in a one-dimensional pattern-forming system. Phys. Rev. E 54 (2), R1048–1051.Google Scholar
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (5), 111146.Google Scholar
Morris, S. W., Bruyn, J. R. & May, A. D. 1990 Electroconvection and pattern formation in a suspended smectic film. Phys. Rev. Lett. 65 (19), 23782381.Google Scholar
Morris, S. W., Bruyn, J. R. & May, A. D. 1991 Velocity and current measurements in electroconvecting smectic films. Phys. Rev. A 44 (12), 81468157.Google Scholar
Patrício, P., Leal, C. R., Pinto, L. F. V., Boto, A. & Cidade, M. T. 2012 Electro-rheology study of a series of liquid crystal cyanobiphenyls: experimental and theoretical treatment. Liq. Cryst 39 (1), 2537.Google Scholar
Pérez, A. T., Vázquez, P. A., Wu, J. & Traoré, P. 2014 Electrohydrodynamic linear stability analysis of dielectric liquids subjected to unipolar injection in a rectangular enclosure with rigid sidewalls. J. Fluid Mech. 758, 586602.Google Scholar
Pfister, G., Schmidt, H., Cliffe, K. A. & Mullin, T. 1988 Bifurcation phenomena in Taylor–Couette flow in a very short annulus. J. Fluid Mech. 191, 118.CrossRefGoogle Scholar
Sharma, D., MacDonald, J. C. & Iannacchione, G. S. 2006 Thermodynamics of activated phase transitions of 8CB: DSC and MC calorimetry. J. Phys. Chem. B 110, 1667916684.CrossRefGoogle ScholarPubMed
Traoré, P. & Pérez, A. T. 2012 Two-dimensional numerical analysis of electroconvection in a dielectric liquid subjected to strong unipolar injection. Phys. Fluids 24, 037102.Google Scholar
Tsai, P., Daya, Z. A., Deyirmenjian, V. B. & Morris, S. W. 2007 Direct numerical simulation of supercritical annular electroconvection. Phys. Rev. E 76 (2), 026305.Google Scholar
Tsai, P., Daya, Z. A. & Morris, S. W. 2004 Aspect-ratio dependence of charge transport in turbulent electroconvection. Phys. Rev. Lett. 92 (8), 084503.Google Scholar
Tsai, P., Morris, S. W. & Daya, Z. A. 2008 Localized states in sheared electroconvection. Europhys. Lett. 84 (1), 14003.Google Scholar