Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:29:15.391Z Has data issue: false hasContentIssue false

Thermohaline layering on the microscale

Published online by Cambridge University Press:  14 January 2019

Timour Radko*
Affiliation:
Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA
*
Email address for correspondence: tradko@nps.edu

Abstract

A theoretical model is developed which illustrates the dynamics of layering instability, frequently realized in ocean regions with active fingering convection. Thermohaline layering is driven by the interplay between large-scale stratification and primary double-diffusive instabilities operating at the microscale – temporal and spatial scales set by molecular dissipation. This interaction is described by a combination of direct numerical simulations and an asymptotic multiscale model. The multiscale theory is used to formulate explicit and dynamically consistent flux laws, which can be readily implemented in large-scale analytical and numerical models. Most previous theoretical investigations of thermohaline layering were based on the flux-gradient model, which assumes that the vertical transport of density components is uniquely determined by their local background gradients. The key deficiency of this approach is that layering instabilities predicted by the flux-gradient model have unbounded growth rates at high wavenumbers. The resulting ultraviolet catastrophe precludes the analysis of such basic properties of layering instability as its preferred wavelength or the maximal growth rate. The multiscale model, on the other hand, incorporates hyperdiffusion terms that stabilize short layering modes. Overall, the presented theory carries the triple advantage of (i) offering an explicit description of the interaction between microstructure and layering modes, (ii) taking into account the influence of non-uniform stratification on microstructure-driven mixing, and (iii) avoiding unphysical behaviour of the flux-gradient laws at small scales. While the multiscale approach to the parametrization of time-dependent small-scale processes is illustrated here on the example of fingering convection, we expect the proposed technique to be readily adaptable to a wide range of applications.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.Google Scholar
Balmforth, N. J., Casti, A. R. R. & Julien, K. A. 1998a Thermohaline convection with nonlinear salt profiles. Phys. Fluids 10, 819828.Google Scholar
Balmforth, N. J., Llewellyn Smith, S. G. & Young, W. R. 1998b Dynamics of interfaces and layers in a stratified turbulent fluid. J. Fluid Mech. 355, 329358.Google Scholar
Balmforth, N. J. & Young, Y.-N. 2002 Stratified Kolmogorov flow. J. Fluid Mech. 450, 131167.Google Scholar
Balmforth, N. J. & Young, Y.-N. 2005 Stratified Kolmogorov flow. Part 2. J. Fluid Mech. 528, 2342.Google Scholar
Bryden, H. L., Schroeder, K., Sparnocchia, S., Borghini, M. & Vetrano, A. 2014 Thermohaline Staircases in the Western Mediterranean Sea. J. Mar. Res. 72, 118.Google Scholar
Dubrulle, B. & Frisch, U. 1991 Eddy viscosity of parity-invariant flow. Phys. Rev. A 43, 53555364.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64, 36523665.Google Scholar
Gama, S., Vergassola, M. & Frisch, U. 1994 Negative eddy viscosity in isotropically forced 2-dimensional flow – linear and nonlinear dynamics. J. Fluid Mech. 260, 95126.Google Scholar
Garaud, P. 2018 Double-diffusive convection at low Prandtl number. Annu. Rev. Fluid Mech 50, 275298.Google Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.Google Scholar
Kimura, S. & Smyth, W. D. 2007 Direct numerical simulation of salt sheets and turbulence in a double-diffusive shear layer. Geophys. Res. Lett. 34, L21610.Google Scholar
Krishnamurti, R. 2009 Heat, salt and momentum transport in a laboratory thermohaline staircase. J. Fluid Mech. 638, 491506.Google Scholar
Krommes, J. A. & Kim, C.-B. 2000 Interactions of disparate scales in drift-wave turbulence. Phys. Rev. E 62, 85088539.Google Scholar
Linden, P. F. 1974 Salt fingers in a steady shear flow. Geophys. Fluid Dyn. 6, 127.Google Scholar
Manfroi, A. & Young, W. 1999 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56, 784800.Google Scholar
Manfroi, A. & Young, W. 2002 Stability of beta-plane Kolmogorov flow. Physica D 162, 208232.Google Scholar
Marston, J. B., Conover, E. & Schneider, T. 2008 Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65, 19551966.Google Scholar
Mei, C. C. & Vernescu, M. 2010 Homogenization Methods for Multiscale Mechanics, 330 pp. World Scientific Publishing.Google Scholar
Merryfield, W. J. 2000 Origin of thermohaline staircases. J. Phys. Oceanogr. 30, 10461068.Google Scholar
Meshalkin, L. & Sinai, Y. 1961 Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid. Z. Angew. Math. Mech. 25, 17001705.Google Scholar
Mueller, R. D., Smyth, W. D. & Ruddick, B. 2007 Shear and convective turbulence in a model of thermohaline intrusions. J. Phys. Oceanogr. 37, 25342549.Google Scholar
Novikov, A. & Papanicolaou, G. 2001 Eddy viscosity of cellular flows. J. Fluid Mech. 446, 173198.Google Scholar
Paparella, F. & von Hardenberg, J. 2012 Clustering of salt fingers in double-diffusive convection leads to staircaselike stratification. Phys. Rev. Lett. 109, 014502.Google Scholar
Paparella, F. & von Hardenberg, J. 2014 A model for staircase formation in fingering convection. Acta Applicandae Mathematicae 132, 457467.Google Scholar
Radko, T. 2003 A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech. 497, 365380.Google Scholar
Radko, T. 2005 What determines the thickness of layers in a thermohaline staircase? J. Fluid Mech. 523, 7998.Google Scholar
Radko, T. 2007 Mechanics of merging event for a series of layers in a stratified turbulent fluid. J. Fluid Mech. 577, 251273.Google Scholar
Radko, T. 2008 The double-diffusive modon. J. Fluid Mech. 609, 5985.Google Scholar
Radko, T. 2011 Eddy viscosity and diffusivity in the modon-sea model. J. Mar. Res. 69, 723752.Google Scholar
Radko, T. & Stern, M. E. 2011 Finescale instabilities of the double-diffusive shear flow. J. Phys. Oceanogr. 41, 571585.Google Scholar
Radko, T. 2013 Double-Diffusive Convection, 344 pp. Cambridge University Press.Google Scholar
Radko, T. 2014 Applicability and failure of the flux-gradient laws in double-diffusive convection. J. Fluid Mech. 750, 3372.Google Scholar
Radko, T., Flanagan, J., Stellmach, S. & Timmermans, M.-L. 2014 Double-diffusive recipes. Part 2. Layer merging events. J. Phys. Oceanogr. 44, 12851305.Google Scholar
Radko, T., Ball, J., Colosi, J. & Flanagan, J. 2015 Double-diffusive convection in a stochastic shear. J. Phys. Oceanogr. 45, 31553167.Google Scholar
Radko, T. 2016a On the spontaneous generation of large-scale eddy-induced patterns: the average Eddy model. J. Fluid. Mech. 809, 316344.Google Scholar
Radko, T. 2016b Thermohaline layering in dynamically and diffusively stable shear flows. J. Fluid. Mech 805, 147170.Google Scholar
Radko, T. & Kamenkovich, I. 2017 On the topographic modulation of large-scale eddying flows. J. Phys. Oceanogr. 47, 21572172.Google Scholar
Ruddick, B. & Kerr, O. 2003 Oceanic thermohaline intrusions: theory. Prog. Oceanogr. 56, 483497.Google Scholar
Schmitt, R. W. 1994 Double diffusion in oceanography. Annu. Rev. Fluid Mech. 26, 255285.Google Scholar
Schmitt, R. W., Ledwell, J. R., Montgomery, E. T., Polzin, K. L. & Toole, J. M. 2005 Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science 308, 685688.Google Scholar
Smyth, W. D. & Ruddick, B. 2010 Effects of ambient turbulence on interleaving at a baroclinic front. J. Phys. Oceanogr. 40, 685712.Google Scholar
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69, 16331656.Google Scholar
Stellmach, S., Traxler, A., Garaud, P., Brummell, N. & Radko, T. 2011 Dynamics of fingering convection II: the formation of thermohaline staircases. J. Fluid Mech. 677, 554571.Google Scholar
Stern, M. E. 1960 The ‘salt-fountain’ and thermohaline convection. Tellus 12, 172175.Google Scholar
Stern, M. E. 1967 Lateral mixing of water masses. Deep-Sea Res. 14, 747753.Google Scholar
Stern, M. E. 1969 Collective instability of salt fingers. J. Fluid Mech. 35, 209218.Google Scholar
Stern, M. E. & Turner, J. S. 1969 Salt fingers and convective layers. Deep-Sea Res. 16, 497511.Google Scholar
Stern, M. E., Radko, T. & Simeonov, J. 2001 3D salt fingers in an unbounded thermocline with application to the Central Ocean. J. Mar. Res. 59, 355390.Google Scholar
Stern, M. E. & Simeonov, J. 2002 Internal wave overturns produced by salt fingers. J. Phys. Oceanogr. 32, 36383656.Google Scholar
Tobias, S. M., Dagon, K. & Marston, J. 2011 Astrophysical fluid dynamics via direct statistical simulation. Astrophys. J. 727, 127.Google Scholar
Traxler, A., Stellmach, S., Garaud, P., Radko, T. & Brummel, N. 2011 Dynamics of fingering convection I: small-scale fluxes and large-scale instabilities. J. Fluid Mech. 677, 530553.Google Scholar
Vanneste, J. 2000 Enhanced dissipation for quasi-geostrophic motion over small-scale topography. J. Fluid Mech. 407, 105122.Google Scholar
Wirth, A., Gama, S. & Frisch, U. 1995 Eddy viscosity of three-dimensional flow. J. Fluid Mech. 288, 249264.Google Scholar
Zodiatis, G. & Gasparini, G. P. 1996 Thermohaline staircase formations in the Tyrrhenian Sea. Deep-Sea Res. 43, 655678.Google Scholar