Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T04:11:39.706Z Has data issue: false hasContentIssue false

Primary instability of a visco-plastic film down an inclined plane: experimental study

Published online by Cambridge University Press:  07 July 2021

D. Mounkaila Noma*
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, Université de Lyon/CNRS, École Centrale de Lyon/Université Claude Bernard Lyon 1/INSA Lyon, 36 avenue Guy de Collongue, 69134Ecully CEDEX, France
S. Dagois-Bohy
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, Université de Lyon/CNRS, École Centrale de Lyon/Université Claude Bernard Lyon 1/INSA Lyon, 36 avenue Guy de Collongue, 69134Ecully CEDEX, France
S. Millet
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, Université de Lyon/CNRS, École Centrale de Lyon/Université Claude Bernard Lyon 1/INSA Lyon, 36 avenue Guy de Collongue, 69134Ecully CEDEX, France
V. Botton
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, Université de Lyon/CNRS, École Centrale de Lyon/Université Claude Bernard Lyon 1/INSA Lyon, 36 avenue Guy de Collongue, 69134Ecully CEDEX, France
D. Henry
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, Université de Lyon/CNRS, École Centrale de Lyon/Université Claude Bernard Lyon 1/INSA Lyon, 36 avenue Guy de Collongue, 69134Ecully CEDEX, France
H. Ben Hadid
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, Université de Lyon/CNRS, École Centrale de Lyon/Université Claude Bernard Lyon 1/INSA Lyon, 36 avenue Guy de Collongue, 69134Ecully CEDEX, France
*
Email address for correspondence: djibrilla.mounkaila-noma@univ-lyon1.fr

Abstract

We study experimentally the primary instability of a visco-plastic film flow down an inclined plane. The experimental set-up is a channel with a varying slope angle, in which a permanent flow of a Herschel–Bulkley fluid (carbopol or kaolin) is established. Controlled perturbations are imposed at the entrance of the channel to generate surface waves, and their downstream evolution is observed with a laser sensor system measuring the local fluid thickness. Growth rates and cutoff frequencies are obtained after processing the thickness signal, and experimental critical Reynolds and Bingham numbers are deduced. We find that the experimental stability map obtained is well described by the pseudo-plug model of Balmforth & Liu (J. Fluid Mech., vol, 519, 2004, pp. 33–54), a model obtained after neglecting the film thickness compared with its length. This is not the case for dispersion effects (growth rates, cutoff frequencies, phase speeds), for which a more accurate model is needed.

Type
JFM Rapids
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allouche, M.H., Botton, V., Millet, S., Henry, D., Dagois-Bohy, S., Güzel, B. & Ben Hadid, H. 2017 Primary instability of a shear-thinning film flow down an incline: experimental study. J. Fluid Mech. 821, R1.CrossRefGoogle Scholar
Balmforth, N.J. & Craster, R.V. 1999 A consistent thin-layer theory for Bingham plastics. J. Non-Newtonian Fluid Mech. 84 (1), 6581.CrossRefGoogle Scholar
Balmforth, N.J. & Liu, J.J. 2004 Roll waves in mud. J. Fluid Mech. 519, 3354.CrossRefGoogle Scholar
Benjamin, T.B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2 (6), 554573.CrossRefGoogle Scholar
Bingham, E.C. 1922 Fluidity and Plasticity, vol. 2. McGraw-Hill.Google Scholar
Blake, S. 1990 Viscoplastic models of lava domes. In Lava Flows and Domes (ed. J.H. Fink), IAVCEI Proceedings in Volcanology, vol 2, pp. 88–126. Springer.CrossRefGoogle Scholar
Chambon, G., Ghemmour, A. & Laigle, D. 2009 Gravity-driven surges of a viscoplastic fluid: an experimental study. J. Non-Newtonian Fluid Mech. 158 (1–3), 5462.CrossRefGoogle Scholar
Coussot, P. 1994 Steady, laminar, flow of concentrated mud suspensions in open channel. J. Hydraul Res. 32 (4), 535559.CrossRefGoogle Scholar
Coussot, P. 1995 Structural similarity and transition from Newtonian to non-Newtonian behavior for clay-water suspensions. Phys. Rev. Lett. 74 (20), 39713974.CrossRefGoogle ScholarPubMed
Coussot, P. & Piau, J.M. 1994 On the behavior of fine mud suspensions. Rheol. acta 33 (3), 175184.CrossRefGoogle Scholar
Dinkgreve, M., Fazilati, M., Denn, M. & Bonn, D. 2018 Carbopol: from a simple to a thixotropic yield stress fluid. J. Rheol. 62 (3), 773780.CrossRefGoogle Scholar
Engelund, F. & Zhaohui, W. 1984 Instability of hyperconcentrated flow. ASCE J. Hydraul. Engng 110 (3), 219233.CrossRefGoogle Scholar
Fernández-Nieto, E.D., Noble, P. & Vila, J.-P. 2010 Shallow water equations for non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 165 (13–14), 712732.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2003 Long-surface-wave instability in dense granular flows. J. Fluid Mech. 486, 2150.CrossRefGoogle Scholar
Freydier, P., Chambon, G. & Naaim, M. 2017 Experimental characterization of velocity fields within the front of viscoplastic surges down an incline. J. Non-Newtonian Fluid Mech. 240, 5669.CrossRefGoogle Scholar
Frigaard, I.A., Howison, S.D. & Sobey, I.J. 1994 On the stability of poiseuille flow of a Bingham fluid. J. Fluid Mech. 263, 133150.CrossRefGoogle Scholar
Herschel, W.H. & Bulkley, R. 1926 Konsistenzmessungen von gummi-benzollösungen. Kolloidn. Z. 39 (4), 291300.CrossRefGoogle Scholar
Iverson, R.M. 1997 The physics of debris flows. Rev. Geophys. 35 (3), 245296.CrossRefGoogle Scholar
Kapitsa, P.L. & Kapitsa, S.P. 1949 Wave flow of thin layers of viscous liquids. Part III. Experimental research of a wave flow regime. ZhETF 19, 105120.Google Scholar
Ketz, R.J., Prud'homme, R.K. & Graessley, W.W. 1988 Rheology of concentrated microgel solutions. Rheol. Acta 27 (5), 531539.CrossRefGoogle Scholar
Köhler, A., McElwaine, J.N., Sovilla, B., Ash, M. & Brennan, P. 2016 The dynamics of surges in the 3 February 2015 avalanches in Vallée de la Sionne. J. Geophys. Res. 121 (11), 21922210.CrossRefGoogle Scholar
Liu, J., Paul, J.D. & Gollub, J.P. 1993 Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69101.CrossRefGoogle Scholar
Millet, S., Botton, V., Rousset, F. & Ben Hadid, H. 2008 Wave celerity on a shear-thinning fluid film flowing down an incline. Phys. Fluids 20 (3), 031701.CrossRefGoogle Scholar
Nishimura, K. & Maeno, N. 1987 Experiments on snow-avalanche dynamics. IAHS Publ. 162, 395404.Google Scholar
Piau, J.M. 2007 Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges: meso-and macroscopic properties, constitutive equations and scaling laws. J. Non-Newtonian Fluid Mech. 144 (1), 129.CrossRefGoogle Scholar
Qian, N., Wan, Z.H. & Qian, Y.Y. 1979 The flow with heavy sediment concentration in the Yellow River basin. J. Tsinghua Univ. 19 (2), 117.Google Scholar
Smith, M.K. 1990 The mechanism for the long-wave instability in thin liquid films. J. Fluid Mech. 217, 469485.CrossRefGoogle Scholar
Tamburrino, A. & Ihle, C.F. 2013 Roll wave appearance in bentonite suspensions flowing down inclined planes. J. Hydraul. Res. 51 (3), 330335.CrossRefGoogle Scholar
Yih, C.-S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6 (3), 321334.CrossRefGoogle Scholar
Yoshida, I., Sugai, T., Tani, S., Motegi, M., Minamida, K. & Hayakawa, H. 1981 Automation of internal friction measurement apparatus of inverted torsion pendulum type. J. Phys. E: Sci. Instrum. 14 (10), 12011206.CrossRefGoogle Scholar