Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T23:57:30.123Z Has data issue: false hasContentIssue false

A population balance model for large eddy simulation of polydisperse droplet evolution

Published online by Cambridge University Press:  18 September 2019

A. K. Aiyer*
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
D. Yang
Affiliation:
Department of Mechanical Engineering, University of Houston, TX 77004, USA
M. Chamecki
Affiliation:
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA
C. Meneveau
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
*
Email address for correspondence: aaiyer1@jhu.edu

Abstract

In the context of many applications of turbulent multi-phase flows, knowledge of the dispersed phase size distribution and its evolution is critical to predicting important macroscopic features. We develop a large eddy simulation (LES) model that can predict the turbulent transport and evolution of size distributions, for a specific subset of applications in which the dispersed phase can be assumed to consist of spherical droplets, and occurring at low volume fraction. We use a population dynamics model for polydisperse droplet distributions specifically adapted to a LES framework including a model for droplet breakup due to turbulence, neglecting coalescence consistent with the assumed small dispersed phase volume fractions. We model the number density fields using an Eulerian approach for each bin of the discretized droplet size distribution. Following earlier methods used in the Reynolds-averaged Navier–Stokes framework, the droplet breakup due to turbulent fluctuations is modelled by treating droplet–eddy collisions as in kinetic theory of gases. Existing models assume the scale of droplet–eddy collision to be in the inertial range of turbulence. In order to also model smaller droplets comparable to or smaller than the Kolmogorov scale we extend the breakup kernels using a structure function model that smoothly transitions from the inertial to the viscous range. The model includes a dimensionless coefficient that is fitted by comparing predictions in a one-dimensional version of the model with a laboratory experiment of oil droplet breakup below breaking waves. After initial comparisons of the one-dimensional model to measurements of oil droplets in an axisymmetric jet, it is then applied in a three-dimensional LES of a jet in cross-flow with large oil droplets of a single size being released at the source of the jet. We model the concentration fields using $N_{d}=15$ bins of discrete droplet sizes and solve scalar transport equations for each bin. The resulting droplet size distributions are compared with published experimental data, and good agreement for the relative size distribution is obtained. The LES results also enable us to quantify size distribution variability. We find that the probability distribution functions of key quantities such as the total surface area and the Sauter mean diameter of oil droplets are highly variable, some displaying strong non-Gaussian intermittent behaviour.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albertson, J. D. & Parlange, M. B. 1999 Surface length scales and shear stress: implications for land-atmosphere interaction over complex terrain. Water Resour. Res. 35 (7), 21212132.Google Scholar
Azbel, D. 1981 Two Phase Flows in Chemical Engineering. Cambridge University Press.Google Scholar
Bandara, U. C. & Yapa, P. D. 2011 Bubble sizes, breakup, and coalescence in deepwater gas/oil plumes. J. Hydraul. Engng ASCE 137 (7), 729738.Google Scholar
Batchelor, G. K. 1951 Pressure fluctuations in isotropic turbulence. Proc. Camb. Phil. Soc. 47 (1950), 359374.Google Scholar
Bossard, J. A. & Peck, R. E. 1996 Droplet size distribution effects in spray combustion. Symposium (International) on Combustion 26 (1), 16711677.Google Scholar
Bou-Zeid, E., Meneveau, C. & Parlange, M. 2005 A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 025105.Google Scholar
Brandvik, P. J., Johansen, Ø., Leirvik, F., Farooq, U. & Daling, P. S. 2013 Droplet breakup in subsurface oil releases. Part 1. Experimental study of droplet breakup and effectiveness of dispersant injection. Mar. Pollut. Bull. 73 (1), 319326.Google Scholar
Calabrese, R. V., Wang, C. Y. & Bryner, N. P. 1986 Drop breakup in turbulent stirred tank contactors. Part I. Effect of Dispersed-Phase Viscosity. AlChE J. 32 (4), 677681.Google Scholar
Chamecki, M., Meneveau, C. & Parlange, M. B. 2008 A hybrid spectral/finite-volume algorithm for large-eddy simulation of scalars in the atmospheric boundary layer. Boundary-Layer Meteorol. 128 (3), 473484.Google Scholar
Chatzi, E. & James, M. L. 1987 Analysis of interactions for liquid–liquid dispersions in agitated vessels. Ind. Engng Chem. Res. 26 (11), 22632267.Google Scholar
Chen, B., Yang, D., Meneveau, C. & Chamecki, M. 2018 Numerical study of the effects of chemical dispersant on oil transport from an idealized underwater blowout. Phys. Rev. Fluids 3, 083801.Google Scholar
Cortelezzi, L. & Karagozian, A. R. 2001 On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347373.Google Scholar
Coulaloglou, C. A. & Tavlarides, L. L. 1977 Description of interaction processes in agitated liquid–liquid dispersions. Chem. Engng Sci. 32 (11), 12891297.Google Scholar
Desjardins, O., Moureau, V. & Pitsch, H. 2008 An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J. Comput. Phys. 227 (18), 83958416.Google Scholar
Duret, B., Luret, G., Reveillon, J., Menard, T., Berlemont, A. & Demoulin, F. X. 2012 Dns analysis of turbulent mixing in two-phase flows. Intl J. Multiphase Flow 40, 93105.Google Scholar
Eastwood, C. D., Armi, L. & Lasheras, J. C. 2004 The breakup of immiscible fluids in turbulent flows. J. Fluid Mech. 502, 309333.Google Scholar
Ferry, J. & Balachandar, S. 2001 A fast Eulerian method for disperse two-phase flow. Intl J. Multiphase Flow 27 (7), 11991226.Google Scholar
Gaskell, P. H. & Lau, A. K. C. 1988 Curvature compensated convective transport: SMART, a new boundedness preserving transport algorithm. Intl J. Numer. Meth. Fluids 8 (6), 617641.Google Scholar
Gopalan, B., Malkiel, E. & Katz, J. 2008 Experimental investigation of turbulent diffusion of slightly buoyant droplets in locally isotropic turbulence. Phys. Fluids 20 (9), 095102.Google Scholar
Gorokhovski, M. & Herrmann, M. 2008 Modeling primary atomization. Annu. Rev. Fluid Mech. 40 (1), 343366.Google Scholar
Herrmann, M. 2010 Detailed numerical simulations of the primary atomization of a turbulent liquid jet in crossflow. J. Engng Gas Turbines Power 132 (6), 061506.Google Scholar
Herrmann, M. 2013 A sub-grid surface dynamics model for sub-filter surface tension induced interface dynamics. Comput. Fluids 87, 92101.Google Scholar
Hinze, J. O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AlChE J. 1 (3), 289295.Google Scholar
Hulburt, H. M. & Katz, S. 1964 Some problems in particle technology. Chem. Engng Sci. 19 (8), 555574.Google Scholar
Hussein, H. J., Capp, S. P. & George, W. K. 1994 Velocity measurements in a high-Reynolds number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.Google Scholar
Igel, A. L. & van den Heever, S. C. 2016 The importance of the shape of cloud droplet size distributions in shallow cumulus clouds. Part I. Bin microphysics simulations. J. Atmos. Sci.; JAS–D–15–0382.1.Google Scholar
Jakobsen, H. A. 2014 The Population Balance Equation, pp. 9371003. Springer International Publishing.Google Scholar
Johansen, Ø., Brandvik, P. J. & Farooq, U. 2013 Droplet breakup in subsea oil releases. Part 2. Predictions of droplet size distributions with and without injection of chemical dispersants. Mar. Pollut. Bull. 73 (1), 327335.Google Scholar
Johnson, P. L. & Meneveau, C. 2018 Predicting viscous-range velocity gradient dynamics in large-eddy simulations of turbulence. J. Fluid Mech. 837, 80114.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. C. R. Acad. Sci. USSR 30, 301.Google Scholar
Kolmogorov, A. N. 1949 On the breakage of drops in a turbulent flow. Dokl. Akad. Nauk SSSR 66, 825828.Google Scholar
Konno, M., Aoki, M. & Saito, S. 1982 Scale effect on breakup process in liquid–liquid agitated tanks. J. Chem. Engng Japan 16, 312319.Google Scholar
Kumar, J., Peglow, M., Warnecke, G., Heinrich, S. & Mörl, L. 2006 Improved accuracy and convergence of discretized population balance for aggregation. The cell average technique. Chem. Engng Sci. 61 (10), 33273342.Google Scholar
Kumar, S. & Ramakrishna, D. 1996 On the solution of population balance equations by discretization. I. A fixed pivot technique. Chem. Engng Sci. 51 (8), 13111332.Google Scholar
Lasheras, J. C., Eastwood, C., Martínez-Bazán, C. & Montaes, J. L. 2002 A review of statistical models for the break-up an immiscible fluid immersed into a fully developed turbulent flow. Intl J. Multiphase Flow 28 (2), 247278.Google Scholar
Lehr, F. & Mewes, D. 1999 A transport equation for the interfacial area density applied to bubble columns. Chem. Engng Sci. 56, 11591166.Google Scholar
Li, C., Miller, J., Wang, J., Koley, S. S. & Katz, J. 2017 Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks. J. Geophys. Res. Oceans 122 (10), 79387957.Google Scholar
Liao, Y. & Lucas, D. 2009 A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem. Engng Sci. 64 (15), 33893406.Google Scholar
Liu, Y. G., You, L. G., Yang, W. N. & Liu, F. 1995 On the size distribution of cloud droplets. Atmos. Res. 35 (2-4), 201216.Google Scholar
Luo, H. & Svendsen, H. F. 1996 Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J. 42 (5), 12251233.Google Scholar
Marchal, P., David, R., Klein, J. P. & Villermaux, J. 1988 Crystallization and precipitation engineering-I. An efficient method for solving population balance in crystallization with agglomeration. Chem. Engng Sci. 43 (1), 5967.Google Scholar
Martínez-Bazán, Rodríguez-rodríguez, J., Deane, G. B., Montañés, J. L. & Lasheras, J. C. 2010 Considerations on bubble fragmentation models. J. Fluid Mech. 661, 159177.Google Scholar
Martínez-Bazán, C., Montañés, J. L. & Lasheras, J. C. 1999a On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 401, 157182.Google Scholar
Martínez-Bazán, C., Montañés, J. L. & Lasheras, J. C. 1999b On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size pdf of the resulting daughter bubbles. J. Fluid Mech. 401, 183207.Google Scholar
Murphy, D. W., Xue, X., Sampath, K. & Katz, J. 2016 Crude oil jets in crossflow: effects of dispersant concentration on plume behavior. J. Geophys. Res. Oceans 121 (6), 42644281.Google Scholar
Narsimhan, G., Gupta, J. P. & Ramkrishna, D. 1979 A model for transitional breakage probability of droplets in agitated lean liquid–liquid dispersions. Chem. Engng Sci. 34 (2), 257265.Google Scholar
Narsimhan, G., Ramkrishna, D. & Gupta, J. P. 1980 Analysis of drop size distributions in lean liquid–liquid dispersions. AlChE J. 26 (6), 9911000.Google Scholar
Neuber, G., Kronenburg, A., Stein, O. T. & Cleary, M. J. 2017 MMC-LES modelling of droplet nucleation and growth in turbulent jets. Chem. Engng Sci. 167, 204218.Google Scholar
Nissanka, I. D. & Yapa, P. D. 2016 Calculation of oil droplet size distribution in an underwater oil well blowout. J. Hydraul Res. 54 (3), 307320.Google Scholar
Nissanka, I. D. & Yapa, P. D. 2018 Calculation of oil droplet size distribution in ocean oil spills: a review. Mar. Pollut. Bull. 135, 723734.Google Scholar
North, E. W., Adams, E. E., Thessen, A. E., Schlag, Z., He, R., Socolofsky, S. A., Masutani, S. M. & Peckham, S. D. 2015 The influence of droplet size and biodegradation on the transport of subsurface oil droplets during the deepwater horizon spill: a model sensitivity study. Environ. Res. Lett. 10 (2), 024016.Google Scholar
Pedel, J., Thornock, J. N., Smith, S. T. & Smith, P. J. 2014 Large eddy simulation of polydisperse particles in turbulent coaxial jets using the direct quadrature method of moments. Intl J. Multiphase Flow 63, 2338.Google Scholar
Pope, S. B. 2011 Turbulent Flows. Cambridge University Press.Google Scholar
Porté-Agel, F., Meneveau, C. & Parlange, M. B. 2000 A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech. 415, 261284.Google Scholar
Prince, M. J. & Blanch, H. W. 1990 Bubble coalescence and break-up in air-sparged bubble columns. AlChE J. 36 (10), 14851499.Google Scholar
Ramkrishna, D. 1985 The status of population balances. Rev. Chem. Engng 3 (1), 4995.Google Scholar
Randolph, A. D. 1964 A population balance for countable entities. Can. J. Chem. Engng 42 (6), 280281.Google Scholar
Salehi, F., Cleary, M. J. & Masri, A. R. 2017 Population balance equation for turbulent polydispersed inertial droplets and particles. J. Fluid Mech. 831, 719742.Google Scholar
Sathyagal, A. N., Ramkrishna, D. & Narsimhan, G. 1996 Droplet breakage in stirred dispersions. Breakage functions from experimental drop-size distributions. Chem. Engng Sci. 51 (9), 13771391.Google Scholar
Sato, Y. & Yamamoto, K. 1987 Lagrangian measurement of fluid-particle motion in an isotropic turbulent field. J. Fluid Mech. 175, 183199.Google Scholar
Seubert, N., Kronenburg, A., Stein, O. T., Ge, Y. & Cleary, M. J. 2012 Large eddy simulation-probability density function modelling of nucleation and condensation of DBP droplets in a turbulent jet. In ICLASS 2012, 12th Triennial Int. Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, 2012, pp. 18. Institute for Liquid Atomization and Spray Systems.Google Scholar
Sewerin, F. & Rigopoulos, S. 2017 An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows. Phys. Fluids 29 (10), 105105.Google Scholar
Skartlien, R., Sollum, E. & Schumann, H. 2013 Droplet size distributions in turbulent emulsions: breakup criteria and surfactant effects from direct numerical simulations. J. Chem. Phys. 139 (17), 174901.Google Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Mon. Weath. Rev. 91 (3), 99164.Google Scholar
Smoluchowski, M. V. 1916 Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Zeitschrift fur Physik 17, 557585.Google Scholar
Solsvik, J. & Jakobsen, H. A. 2016 Development of fluid particle breakup and coalescence closure models for the complete energy spectrum of isotropic turbulence. Ind. Engng Chem. Res. 55 (5), 14491460.Google Scholar
Solsvik, J., Maaß, S. & Jakobsen, H. A. 2016 Definition of the single drop breakup event. Ind. Engng Chem. Res. 55 (10), 28722882.Google Scholar
Tseng, Y. H., Meneveau, C. & Parlange, M. B. 2006 Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ. Sci. Technol. 40 (8), 26532662.Google Scholar
Tsouris, C. & Tavlarides, L. L. 1994 Breakage and coalescence models for drops in turbulent dispersions. AlChE J. 40 (3), 395406.Google Scholar
Wang, T. & Wang, J. 2007 Numerical simulations of gas–liquid mass transfer in bubble columns with a CFD-PBM coupled model. Chem. Engng Sci. 62 (24), 71077118.Google Scholar
Xu, G. & Antonia, R. 2002 Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33 (5), 677683.Google Scholar
Yang, D., Chen, B., Chamecki, M. & Meneveau, C. 2015 Oil plumes and dispersion in langmuir, upper-ocean turbulence: large-eddy simulations and k-profile parameterization. J. Geophys. Res. Oceans 120 (7), 47294759.Google Scholar
Yang, D., Chen, B., Socolofsky, S. A., Chamecki, M. & Meneveau, C. 2016 Large-eddy simulation and parameterization of buoyant plume dynamics in stratified flow. J. Fluid Mech. 794, 798833.Google Scholar
Yang, D., Meneveau, C. & Shen, L. 2014 Effect of downwind swells on offshore wind energy harvesting a large-eddy simulation study. Renewable Energy 70, 1123.Google Scholar
Zhao, L., Boufadel, M. C., Socolofsky, S. A., Adams, E., King, T. & Lee, K. 2014a Evolution of droplets in subsea oil and gas blowouts: development and validation of the numerical model VDROP-J. Mar. Pollut. Bull. 83 (1), 5869.Google Scholar
Zhao, L., Shaffer, F., Robinson, B., King, T., DAmbrose, C., Pan, Z., Gao, F., Miller, R. S., Conmy, R. N. & Boufadel, M. C. 2016 Underwater oil jet: hydrodynamics and droplet size distribution. Chem. Engng J. 299, 292303.Google Scholar
Zhao, L., Torlapati, J., Boufadel, M. C., King, T., Robinson, B. & Lee, K. 2014b VDROP: a comprehensive model for droplet formation of oils and gases in liquids – incorporation of the interfacial tension and droplet viscosity. Chem. Engng J. 253, 93106.Google Scholar