Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:28:34.088Z Has data issue: false hasContentIssue false

Numerical study of head-on droplet collisions at high Weber numbers

Published online by Cambridge University Press:  26 January 2016

M. Liu
Affiliation:
Technische Universität Darmstadt, Center of Smart Interfaces and Department of Mathematics, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
D. Bothe*
Affiliation:
Technische Universität Darmstadt, Center of Smart Interfaces and Department of Mathematics, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
*
Email address for correspondence: bothe@csi.tu-darmstadt.de

Abstract

Head-on collisions of binary water droplets at high Weber numbers are studied by means of direct numerical simulations (DNS). We modify the lamella stabilization method of Focke & Bothe (J. Non-Newtonian Fluid Mech., vol. 166 (14), 2011, pp. 799–810), which avoids the artificial rupture of the thin lamella arising in high-energy collisions, and validate it in the regime of high Weber numbers. The simulations are conducted with and without initial disturbances and the results are compared with the experimental work of Pan et al. (Phys. Rev. E, vol. 80 (3), 2009, 036301). The influence of initial white noise disturbance on the collision dynamics is identified and good agreement between the simulation results and the experimental results is obtained when the initial noise disturbances are properly exerted. In order to include the stochastic nature of the disturbance, we conduct several simulations with white noise disturbance of same strength and average the spectrum diagram for the unstably developing rim of the collision complex. We show that the magnification of rim perturbation can be predicted by Plateau–Rayleigh theory over a long time span.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbaglah, G. & Deegan, R. D. 2014 Growth and instability of the liquid rim in the crown splash regime. J. Fluid Mech. 752, 485496.CrossRefGoogle Scholar
Agbaglah, G., Josserand, C. & Zaleski, S. 2013 Longitudinal instability of a liquid rim. Phys. Fluids 25 (2), 022103.CrossRefGoogle Scholar
Albert, C., Raach, H. & Bothe, D. 2012 Influence of surface tension models on the hydrodynamics of wavy laminar falling films in volume of fluid-simulations. Intl J. Multiphase Flow 43, 6671.CrossRefGoogle Scholar
Allen, R. F. 1975 The role of surface tension in splashing. J. Colloid Interface Sci. 51 (2), 350351.CrossRefGoogle Scholar
Ashgriz, N. & Poo, J. Y. 1990 Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech. 221, 183204.CrossRefGoogle Scholar
Blazek, J. 2001 Computational Fluid Dynamics: Principles and Applications. Elsevier Science.Google Scholar
Boger, M., Schlottke, J., Munz, C.-D. & Weigand, B. 2010 Reduction of parasitic currents in the DNS VOF code FS3D. In 12th Workshop on Two-Phase Flow Predictions, Universität Halle-Wittenberg (ed. M. Sommerfeld).Google Scholar
Cossali, G. E., Coghe, A. & Marengo, M. 1997 The impact of a single drop on a wetted solid surface. Exp. Fluids 22 (6), 463472.CrossRefGoogle Scholar
Focke, C.2013 Direkte numerische Simulation binärer Kollisionen newtonscher und nichtnewtonscher Tropfen. PhD thesis, TU Darmstadt.Google Scholar
Focke, C. & Bothe, D. 2011 Computational analysis of binary collisions of shear-thinning droplets. J. Non-Newtonian Fluid Mech. 166 (14), 799810.CrossRefGoogle Scholar
Focke, C. & Bothe, D. 2012 Direct numerical simulation of binary off-center collisions of shear thinning droplets at high Weber numbers. Phys. Fluids 24 (7), 073105.CrossRefGoogle Scholar
Focke, C., Kuschel, M., Sommerfeld, M. & Bothe, D. 2013 Collision between high and low viscosity droplets: direct numerical simulations and experiments. Intl J. Multiphase Flow 56, 8192.CrossRefGoogle Scholar
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.CrossRefGoogle Scholar
Jiang, Y. J., Umemura, A. & Law, C. K. 1992 An experimental investigation on the collision behaviour of hydrocarbon droplets. J. Fluid Mech. 234, 171190.CrossRefGoogle Scholar
Kim, H.-Y., Feng, Z. C. & Chun, J.-H 2000 Instability of a liquid jet emerging from a droplet upon collision with a solid surface. Phys. Fluids 12 (3), 531541.CrossRefGoogle Scholar
Kuan, C.-K., Pan, K.-L. & Shyy, W. 2014 Study on high-Weber-number droplet collision by a parallel, adaptive interface-tracking method. J. Fluid Mech. 759, 104133.CrossRefGoogle Scholar
Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S. & Zanetti, G. 1994 Modelling merging and fragmentation in multiphase flows with surfer. J. Comput. Phys. 113 (1), 134147.CrossRefGoogle Scholar
Levin, Z. & Hobbs, P. V. 1971 Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Phil. Trans. R. Soc. Lond. A 269, 555585.Google Scholar
Mehdizadeh, N. Z., Chandra, S. & Mostaghimi, J. 2004 Formation of fingers around the edges of a drop hitting a metal plate with high velocity. J. Fluid Mech. 510, 353373.CrossRefGoogle Scholar
Nikolopoulos, N., Theodorakakos, A. & Bergeles, G. 2009 Off-centre binary collision of droplets: a numerical investigation. Intl J. Heat Mass Transfer 52 (19), 41604174.CrossRefGoogle Scholar
Pan, K.-L., Chou, P.-C. & Tseng, Y.-J. 2009 Binary droplet collision at high Weber number. Phys. Rev. E 80 (3), 036301.Google ScholarPubMed
Pan, Y. & Suga, K. 2005 Numerical simulation of binary liquid droplet collision. Phys. Fluids 17 (8), 082105.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.CrossRefGoogle Scholar
Qian, J. & Law, C. K. 1997 Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 5980.CrossRefGoogle Scholar
Rayleigh, L. 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7197.Google Scholar
Rider, W. J. & Kothe, D. B. 1998 Reconstructing volume tracking. J. Comput. Phys. 141 (2), 112152.CrossRefGoogle Scholar
Rieber, M.2004 Numerische Modellierung der Dynamik freier Grenzflächen in Zweiphasenströmungen. PhD thesis, University of Stuttgart.Google Scholar
Rieber, M. & Frohn, A. 1999 A numerical study on the mechanism of splashing. Intl J. Heat Fluid Flow 20 (5), 455461.CrossRefGoogle Scholar
Roisman, I. V. 2010 On the instability of a free viscous rim. J. Fluid Mech. 661, 206228.CrossRefGoogle Scholar
Roisman, I. V., Horvat, K. & Tropea, C. 2006 Spray impact: rim transverse instability initiating fingering and splash, and description of a secondary spray. Phys. Fluids 18 (10), 102104.CrossRefGoogle Scholar
Roth, N., Mercadé, C., Gomaa, H., Focke, C., Bothe, D., Roisman, I. V. & Weigand, B. 2013 Collision of droplets: experimental, analytical and numerical approach. In ILASS 2013, Chania, Crete (ed. Gavaises, M.), pp. 225231.Google Scholar
Roth, N., Rieber, M. & Frohn, A. 1999 High energy head-on collision of droplets. In ILASS 1999, Toulouse, France (ed. G. Lavergne).Google Scholar
Strutt, J. W. & Rayleigh, L. 1878 On the instability of jets. Proc. Lond. Math. Soc 10, 413.Google Scholar
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes: I. Proc. R. Soc. Lond. A 201 (1065), 192196.Google Scholar
Thoroddsen, S. T. & Sakakibara, J. 1998 Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10 (6), 13591374.CrossRefGoogle Scholar
Zhang, L. V., Brunet, P., Eggers, J. & Deegan, R. D. 2010 Wavelength selection in the crown splash. Phys. Fluids 22 (12), 122105.CrossRefGoogle Scholar