Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T05:31:31.881Z Has data issue: false hasContentIssue false

A numerical simulation of coaxial electrosprays

Published online by Cambridge University Press:  20 December 2019

Jose M. López-Herrera*
Affiliation:
Departmento de Ingeniería Aeroespacial y Mecánica de Fluidos, ESI, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092Sevilla, Spain
Miguel A. Herrada
Affiliation:
Departmento de Ingeniería Aeroespacial y Mecánica de Fluidos, ESI, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092Sevilla, Spain
Manuel Gamero-Castaño
Affiliation:
Department of Mechanical and Aerospace Engineering, The Henry Samueli School of Engineering, University of California Irvine, Irvine, CA92617, USA
Alfonso M. Gañán-Calvo
Affiliation:
Departmento de Ingeniería Aeroespacial y Mecánica de Fluidos, ESI, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092Sevilla, Spain
*
Email address for correspondence: jmlopez@us.es

Abstract

A complete electrohydrodynamic axisymmetric model of coaxial electrosprays under constant electrical permittivities and conductivities, and strict immiscibility of the liquids, is presented. The numerical solution of the model is experimentally validated, and a detailed portrait of the complex physics begotten by the large spectrum of variables involved is described in a choice of representative cases. The appearance of surface charge in both the outer and the inner free interfaces, and some of their interesting features, are revealed. Among those, the possibility of the appearance of a limited segment of opposite charge (negative, if the polarity of the applied potential is positive, or vice versa) in the inner free surface at the transition region illustrates the unexpected features exhibited by this complex system. This has fundamental physicochemical implications in the production of core–shell formulations or the use of the system in analytical chemistry, among a wide variety of applications.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bocanegra, R., Gaonkar, A. G., Barrero, A., Loscertales, I. G., Pechack, D. & Marquez, M. 2005 Production of cocoa butter microcapsules using an electrospray process. J. Food Sci. 70 (8), E492E497.CrossRefGoogle Scholar
Burcham, C. L. & Saville, D. A. 2002 Electrohydrodynamic stability: Taylor–Melcher theory for a liquid bridge suspended in a dielectric gas. J. Fluid Mech. 452, 163187.CrossRefGoogle Scholar
Burton, J. C. & Taborek, P. 2011 Simulations of coulombic fission of charged inviscid drops. Phys. Rev. Lett. 106, 144501.CrossRefGoogle ScholarPubMed
Chen, H., Wang, N., Di, J., Zhao, Y., Song, Y. & Jiang, L. 2010 Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 26 (13), 1129111296.CrossRefGoogle ScholarPubMed
Chen, X., Jia, L., Yin, X., Cheng, J. & Lu, J. 2005 Spraying modes in coaxial jet electrospray with outer driving liquid. Phys. Fluids 17 (3), 032101.CrossRefGoogle Scholar
Cloupeau, M. & Prunet-Foch, B. 1989 Electrostatic spraying of liquids in cone–jet mode. J. Electrostat. 22 (2), 135159.CrossRefGoogle Scholar
Cruz-Mazo, F., Herrada, M. A., Gañán-Calvo, A. M. & Montanero, J. M. 2017 Global stability of axisymmetric flow focusing. J. Fluid Mech. 832, 329344.CrossRefGoogle Scholar
Fernández de la Mora, J. 2007 The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. 39 (1), 217243.CrossRefGoogle Scholar
Fernandez de la Mora, J. & Loscertales, I. G. 1994 The current emitted by highly conducting Taylor cones. J. Fluid Mech. 260, 155184.CrossRefGoogle Scholar
Gamero-Castaño, M. & Magnani, M. 2019 Numerical simulation of electrospraying in the cone–jet mode. J. Fluid Mech. 859, 247267.CrossRefGoogle Scholar
Gañán-Calvo, A. M. 1997 Cone–jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys. Rev. Lett. 79 (2), 217220.CrossRefGoogle Scholar
Gañán-Calvo, A. M. 1999 The surface charge in electrospraying: its nature and its universal scaling laws. J. Aero. Sci. 30 (7), 863872.CrossRefGoogle Scholar
Gañán-Calvo, A. M. 2004 On the general scaling theory for electrospraying. J. Fluid Mech. 507, 203212.CrossRefGoogle Scholar
Gañán-Calvo, A. M., Dávila, J. & Barrero, A. 1997 Current and droplet size in the electrospraying of liquids. Scaling laws. J. Aero. Sci. 28 (2), 249275.CrossRefGoogle Scholar
Gañán-Calvo, A. M., Lasheras, J. C., Dávila, J. & Barrero, A. 1994 The electrostatic spray emitted from an electrified conical meniscus. J. Aero. Sci. 25 (6), 11211142.CrossRefGoogle Scholar
Gañán-Calvo, A. M., López-Herrera, J. M., Herrada, M. A., Ramos, A. & Montanero, J. M. 2018 Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone–jets, and AC electrospray. J. Aero. Sci. 125, 3256.CrossRefGoogle Scholar
Gañán-Calvo, A. M., López-Herrera, J. M., Rebollo-Muñoz, N. & Montanero, J. M. 2016 The onset of electrospray: the universal scaling laws of the first ejection. Sci. Rep. 6, 32357.CrossRefGoogle ScholarPubMed
Gañán-Calvo, A. M. & Montanero, J. M. 2009 Revision of capillary cone–jet physics: electrospray and flow focusing. Phys. Rev. E 79 (6), 066305.Google ScholarPubMed
Gómez-Mascaraque, L. G., Tordera, F., Fabra, M. J., Martínez-Sanz, M. & Lopez-Rubio, A. 2019 Coaxial electrospraying of biopolymers as a strategy to improve protection of bioactive food ingredients. Innovative Food Science and Emerging Technologies 51, 211.CrossRefGoogle Scholar
Grace, J. M. & Marijnissen, J. C. M. 1994 A review of liquid atomization by electrical means. J. Aero. Sci. 25 (6), 10051019.CrossRefGoogle Scholar
He, C.-L., Huang, Z.-M. & Han, X.-J. 2009 Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications. J. Biomed. Mater. Res. A 89 (1), 8095.CrossRefGoogle ScholarPubMed
Herrada, M. A., Lopez-Herrera, J. M., Gañan-Calvo, A. M., Vega, E. J., Montanero, J. M. & Popinet, S. 2012 Numerical simulation of electrospray in the cone–jet mode. Phys. Rev. E 86 (2), 026305.Google ScholarPubMed
Herrada, M. A. & Montanero, J. M. 2016 A numerical method to study the dynamics of capillary fluid systems. J. Comput. Phys. 306, 137147.CrossRefGoogle Scholar
Higuera, F. J. 2003 Flow rate and electric current emitted by a Taylor cone. J. Fluid Mech. 484, 303327.CrossRefGoogle Scholar
Higuera, F. J. 2007 Stationary coaxial electrified jet of a dielectric liquid surrounded by a conductive liquid. Phys. Fluids 19 (1), 012102.CrossRefGoogle Scholar
Jaworek, A. & Krupa, A. 1999 Classification of the modes of EHD spraying. J. Aero. Sci. 30 (7), 873893.CrossRefGoogle Scholar
Ji, X., Yang, W., Wang, T., Mao, C., Guo, L., Xiao, J. & He, N. 2013 Coaxially electrospun core/shell structured poly(L-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering. J. Biomed. Nanotechnol. 9 (10), 16721678.CrossRefGoogle ScholarPubMed
Li, C., Yu, D. G., Williams, G. R. & Wang, Z. H. 2014 Fast-dissolving core–shell composite microparticles of quercetin fabricated using a coaxial electrospray process. PLoS ONE 9 (3), 19.Google ScholarPubMed
Li, D. & Xia, Y. 2004 Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4 (5), 933938.CrossRefGoogle Scholar
López-Herrera, J. M., Barrero, A., López, A., Loscertales, I. G. & Márquez, M. 2003 Coaxial jets generated from electrified Taylor cones. Scaling laws. J. Aero. Sci. 34 (5), 535552.CrossRefGoogle Scholar
Loscertales, I. G., Barrero, A., Guerrero, I., Cortijo, R., Marquez, M. & Gañán-Calvo, A. M. 2002 Micro/nano encapsulation via electrified coaxial liquid jets. Science 295 (5560), 16951698.CrossRefGoogle ScholarPubMed
Lu, X., Wang, C. & Wei, Y. 2009 One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small 5 (21), 23492370.CrossRefGoogle ScholarPubMed
Marginean, I., Nemes, P. & Vertes, A. 2007 A stable regime in electrosprays. Phys. Rev. E 76, 026320.Google Scholar
Mei, F. & Chen, D.-R. 2007 Investigation of compound jet electrospray: particle encapsulation. Phys. Fluids 19 (10), 103303.CrossRefGoogle Scholar
Mei, F. & Chen, D.-R. 2008 Operational modes of dual-capillary electrospraying and the formation of the stable compound cone–jet mod. Aerosol Air Quality Res. 8 (2), 218232.CrossRefGoogle Scholar
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111146.CrossRefGoogle Scholar
Moghe, A. K. & Gupta, B. S. 2008 Co-axial electrospinning for nanofiber structures: preparation and applications. Polymer Rev. 48 (2), 353377.CrossRefGoogle Scholar
Mori, Y. & Young, Y.-N. 2018 From electrodiffusion theory to the electrohydrodynamics of leaky dielectrics through the weak electrolyte limit. J. Fluid Mech. 855, 67130.CrossRefGoogle Scholar
Pantano, C., Gañán-Calvo, A. M. & Barrero, A. 1994 Zeroth-order, electrohydrostatic solution for electrospraying in cone–jet mode. J. Aero. Sci. 25, 10651077.CrossRefGoogle Scholar
Ponce-Torres, A., Montanero, J. M., Herrada, M. A. & Vega, E. J. 2017 Influence of the surface viscosity on the breakup of a surfactant-laden drop. Phys. Rev. Lett. 118 (2), 024501.CrossRefGoogle ScholarPubMed
Ponce-Torres, A., Rebollo-Muñoz, N., Herrada, M. A., Gañán-Calvo, A. M. & Montanero, J. M. 2018 The steady cone–jet mode of electrospraying close to the minimum volume stability limit. J. Fluid Mech. 857, 142172.CrossRefGoogle Scholar
Ponce-Torres, A., Vega, E. J. & Montanero, J. M. 2016 Effects of surface-active impurities on the liquid bridge dynamics. Exp. Fluids 57 (5), 67.CrossRefGoogle Scholar
Qu, H., Wei, S. & Guo, Z. 2013 Coaxial electrospun nanostructures and their applications. J. Mater. Chem. A 1 (38), 11513.CrossRefGoogle Scholar
Riddick, J. A., Bunger, W. B. & Sakano, T. K. 1986 Organic Solvents: Physical Properties and Methods of Purification, 4th edn. Techniques of chemistry, vol. II. Wiley-Interscience.Google Scholar
Rosell-Llompart, J., Grifoll, J. & Loscertales, I. G. 2018 Electrosprays in the cone–jet mode: from taylor cone formation to spray development. J. Aero. Sci. 125, 231.CrossRefGoogle Scholar
Sagert, N. H., Quinn, M. J. & Lee, W. 1980 Adhesion at the tributylphosphate–water interface. J. Colloid Interface Sci. 74 (2), 564566.CrossRefGoogle Scholar
Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1), 2764.CrossRefGoogle Scholar
Schnitzer, O. & Yariv, E. 2015 The Taylor–Melcher leaky dielectric model as a macroscale electrokinetic description. J. Fluid Mech. 773, 133.CrossRefGoogle Scholar
Taylor, G. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond A 280 (1382), 383397.Google Scholar
Torza, S. & Mason, S. G. 1970 Three-phase interactions in shear and electrical fields. J. Colloid Interface Sci. 33 (1), 6783.CrossRefGoogle Scholar
Verdoold, S., Agostinho, L. L. F., Yurteri, C. U. & Marijnissen, J. C. M. 2014 A generic electrospray classification. J. Aero. Sci. 67, 87103.CrossRefGoogle Scholar
Xu, Q., Qin, H., Yin, Z., Hua, J., Pack, D. W. & Wang, C.-H. 2013 Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres. Chem. Engng Sci. 104, 330346.CrossRefGoogle ScholarPubMed
Xu, Y. & Hanna, M. A. 2006 Electrospray encapsulation of water-soluble protein with polylactide. Effects of formulations on morphology, encapsulation efficiency and release profile of particles. International Journal of Pharmaceutics 320 (1–2), 3036.CrossRefGoogle ScholarPubMed
Zamani, M., Prabhakaran, M. P. & Ramakrishna, S. 2013 Advances in drug delivery via electrospun and electrosprayed nanomaterials. International Journal of Nanomedicine 8, 29973017.Google ScholarPubMed
Zhang, L., Huang, J., Si, T. & Xu, R. X. 2012 Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Review of Medical Devices 9 (6), 595612.CrossRefGoogle ScholarPubMed
Zholkovskij, E. K., Masliyah, J. H. & Czarnecki, J. 2002 An electrokinetic model of drop deformation in an electric field. J. Fluid Mech. 472, 127.CrossRefGoogle Scholar