Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T12:02:42.083Z Has data issue: false hasContentIssue false

The Lagrangian kinematics of three-dimensional Darcy flow

Published online by Cambridge University Press:  11 May 2021

Daniel R. Lester*
Affiliation:
School of Engineering, RMIT University, 3000Melbourne, Victoria, Australia
Marco Dentz
Affiliation:
Spanish National Research Council (IDAEA-CSIC), 08034Barcelona, Spain
Aditya Bandopadhyay
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal721302, India
Tanguy Le Borgne
Affiliation:
Geosciences Rennes, UMR 6118, Université de Rennes 1, CNRS, 35042Rennes, France
*
Email address for correspondence: daniel.lester@rmit.edu.au

Abstract

Darcy's law is used widely to model flow in heterogeneous porous media via a spatially varying conductivity field. The isotropic Darcy equation imposes significant constraints on the allowable Lagrangian kinematics of the flow field and thus upon scalar transport. These constraints stem from the fact that the helicity density in these flows is identically zero and so the flow does not admit closed or knotted flow paths. This implies that steady Darcy flow possesses a particularly simple flow topology which involves streamlines that do not possess closed orbits, knots or linked vortex lines. This flow structure is termed ‘complex lamellar’ and consists of fully integrable (in the dynamical systems sense) streamlines which admit two analytic constants of motion and so preclude chaotic advection. In this study we show that these constants of motion correspond to a pair of streamfunctions which are single valued and topologically planar, and the intersections of the level sets of these invariants correspond to streamlines of the flow. We show that the streamfunctions and iso-potential surfaces of the flow form a semi-orthogonal coordinate system, that naturally recovers the topological constraints imposed on the Lagrangian kinematics of these flows. We use this coordinate system to investigate the impact of these constraints upon the kinematics of Darcy flow, including the deformation of fluid elements and transverse macrodispersion of solutes in the absence of local dispersion. These results shed new light on the relevance and limitations of isotropic Darcy flow as a model of transport, mixing and reaction in porous media.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, E.E. & Gelhar, L.W. 1992 Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis. Water Resour. Res. 28 (12), 32933307.CrossRefGoogle Scholar
Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 121.CrossRefGoogle Scholar
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Phil. Trans. R. Soc. Lond. A 235, 6777.Google Scholar
Arnol'd, V.I. 1965 Sur la topologie des écoulments stationnaires des fluids parfaits. C. R. Acad. Sci. Paris 261, 312314.Google Scholar
Arnol'd, V.I. 1997 Mathematical Methods of Classical Mechanics, 2nd edn, vol. 261. Springer.Google Scholar
Attinger, S., Dentz, M. & Kinzelbach, W. 2004 Exact transverse macrodispersion coefficients for transport in heterogeneous porous media. Stoch. Environ. Res. Risk Assess. 18 (1), 915.CrossRefGoogle Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media, Dover Classics of Science and Mathematics, vol. 1. Dover.Google Scholar
Beaudoin, A. & de Dreuzy, J.-R. 2013 Numerical assessment of 3-D macrodispersion in heterogeneous porous media. Water Resour. Res. 49 (5), 24892496.CrossRefGoogle Scholar
Beaudoin, A., de Dreuzy, J.-R. & Erhel, J. 2010 Numerical Monte Carlo analysis of the influence of pore-scale dispersion on macrodispersion in 2-D heterogeneous porous media. Water Resour. Res. 46 (12), W12537.CrossRefGoogle Scholar
Boyland, P.L., Aref, H. & Stremler, M.A. 2000 Topological fluid mechanics of stirring. J. Fluid Mech. 403, 277304.CrossRefGoogle Scholar
Bresciani, E., Kang, P.K. & Lee, S. 2019 Theoretical analysis of groundwater flow patterns near stagnation points. Water Resour. Res. 55 (2), 16241650.CrossRefGoogle Scholar
Cerbelli, S., Giona, M., Gorodetskyi, O. & Anderson, P.D. 2017 Singular eigenvalue limit of advection-diffusion operators and properties of the strange eigenfunctions in globally chaotic flows. Eur. Phys. J. 226 (10), 22472262.Google Scholar
Chiogna, G., Cirpka, O.A., Rolle, M. & Bellin, A. 2015 Helical flow in three-dimensional nonstationary anisotropic heterogeneous porous media. Water Resour. Res. 51 (1), 261280.CrossRefGoogle Scholar
Chiogna, G., Rolle, M., Bellin, A. & Cirpka, O.A. 2014 Helicity and flow topology in three-dimensional anisotropic porous media. Adv. Water Resour. 73, 134143.CrossRefGoogle Scholar
Cole, C.R. & Foote, H.P. 1990 Multigrid methods for solving multiscale transport problems. In Dynamics of Fluids in Hierarchical Porous Media (ed. J.H. Cushman). Academic Press.Google Scholar
Cortis, A. & Berkowitz, B. 2004 Anomalous transport in ‘classical’ soil and sand columns. Soil Sci. Soc. Am. J. 68 (5), 15391548.CrossRefGoogle Scholar
Craig, J.R., Ramadhan, M. & Muffels, C. 2020 A particle tracking algorithm for arbitrary unstructured grids. Groundwater 58 (1), 1926.CrossRefGoogle ScholarPubMed
Cushman, J.H. 2013 The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles, vol. 10. Springer Science and Business Media.Google Scholar
Dagan, G. 1987 Theory of solute transport by groundwater. Annu. Rev. Fluid Mech. 19 (1), 183213.CrossRefGoogle Scholar
Dagan, G. 1989 Flow and Transport in Porous Formations. Springer.CrossRefGoogle Scholar
Dentz, M., de Barros, F.P.J., Le Borgne, T. & Lester, D.R. 2018 Evolution of solute blobs in heterogeneous porous media. J. Fluid Mech. 853, 621646.CrossRefGoogle Scholar
Dentz, M. & Carrera, J. 2003 Effective dispersion in temporally fluctuating flow through a heterogeneous medium. Phys. Rev. E 68, 036310.CrossRefGoogle ScholarPubMed
Dentz, M., Lester, D.R., Le Borgne, T. & de Barros, F.P.J. 2016 Coupled continuous-time random walks for fluid stretching in two-dimensional heterogeneous media. Phys. Rev. E 94, 061102.CrossRefGoogle ScholarPubMed
Engdahl, N.B., Benson, D.A. & Bolster, D. 2014 Predicting the enhancement of mixing-driven reactions in nonuniform flows using measures of flow topology. Phys. Rev. E 90, 051001.CrossRefGoogle ScholarPubMed
Finn, M.D. & Thiffeault, J.-L. 2011 Topological optimization of rod-stirring devices. SIAM Rev. 53 (4), 723743.CrossRefGoogle Scholar
Gelhar, L.W. 1986 Stochastic subsurface hydrology from theory to applications. Water Resour. Res. 22 (9S), 135S145S.CrossRefGoogle Scholar
Gelhar, L.W. 1993 Stochastic Subsurface Hydrology. Prentice-Hall.Google Scholar
Gelhar, L.W. & Axness, C.L. 1983 Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19 (1), 161180.CrossRefGoogle Scholar
Greywall, M.S. 1993 Streamwise computation of three-dimensional flows using two stream functions. J. Fluids Engng 115 (2), 233238.CrossRefGoogle Scholar
Hénon, M. 1966 Sur la topologie des lignes de courant dans un cas particulier. C. R. Acad. Sci. Paris 262, 312314.Google Scholar
Heyman, J., Lester, D.R. & Le Borgne, T. 2021 Scalar signatures of chaotic mixing in porous media. Phys. Rev. Lett. 126, 034505.CrossRefGoogle ScholarPubMed
Heyman, J., Lester, D.R., Turuban, R., Méheust, Y. & Le Borgne, T. 2020 Stretching and folding sustain microscale chemical gradients in porous media. Proc. Natl Acad. Sci. 117 (24), 1335913365.CrossRefGoogle ScholarPubMed
Holm, D.D. & Kimura, Y. 1991 Zero-helicity Lagrangian kinematics of three-dimensional advection. Phys. Fluids A 3 (5), 10331038.CrossRefGoogle Scholar
Hui, W.H. & He, Y. 1997 Hyperbolicity and optimal coordinates for the three-dimensional supersonic Euler equations. SIAM J. Appl. Maths 57 (4), 893928.CrossRefGoogle Scholar
Janković, I., Fiori, A. & Dagan, G. 2003 Flow and transport in highly heterogeneous formations: 3. Numerical simulations and comparison with theoretical results. Water Resour. Res. 39 (9), 1270.CrossRefGoogle Scholar
Janković, I., Steward, D.R., Barnes, R.J. & Dagan, G. 2009 Is transverse macrodispersivity in three-dimensional groundwater transport equal to zero? A counterexample. Water Resour. Res. 45 (8), W08415.CrossRefGoogle Scholar
Kazarinoff, D.C. 1919 Dupin's theorem. Am. Math. Mon. 26 (10), 441444.Google Scholar
Kelvin, W.T. 1884 Papers on Electrostatics and Magnetism. Macmillan and Company.Google Scholar
Kitanidis, P.K. 1994 The concept of the dilution index. Water Resour. Res. 30, 20112026.CrossRefGoogle Scholar
Kleckner, D. & Irvine, W.T.M. 2013 Creation and dynamics of knotted vortices. Nat. Phys. 9 (4), 253258.CrossRefGoogle Scholar
Klimushkin, D.Y. 1994 Method of description of the Alfvén and magnetosonic branches of inhomogeneous plasma oscillations. Plasma Phys. Rep. 20, 280286.Google Scholar
Lamb, H. 1932 Hydrodynamics. The University Press.Google Scholar
Le Borgne, T., Dentz, M. & Villermaux, E. 2013 Stretching, coalescence, and mixing in porous media. Phys. Rev. Lett. 110, 204501.CrossRefGoogle ScholarPubMed
Le Borgne, T., Dentz, M. & Villermaux, E. 2015 The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458498.CrossRefGoogle Scholar
Lester, D.R., Bandopadhyay, A., Dentz, M. & Le Borgne, T. 2019 Hydrodynamic dispersion and Lamb surfaces in Darcy flow. Transp. Porous Med. 130 (3), 903922.CrossRefGoogle Scholar
Lester, D.R., Dentz, M. & Le Borgne, T. 2016 a Chaotic mixing in three-dimensional porous media. J. Fluid Mech. 803, 144174.CrossRefGoogle Scholar
Lester, D.R., Trefry, M.G. & Metcalfe, G. 2016 b Chaotic advection at the pore scale: Mechanisms, upscaling and implications for macroscopic transport. Adv. Water Resour. 97, 175192.CrossRefGoogle Scholar
Lester, D.R., Dentz, M., Le Borgne, T. & Barros, F.P.J.D. 2018 Fluid deformation in random steady three-dimensional flow. J. Fluid Mech. 855, 770803.CrossRefGoogle ScholarPubMed
Matanga, G.B. 1993 Stream functions in three-dimensional groundwater flow. Water Resour. Res. 29 (9), 31253133.CrossRefGoogle Scholar
Moffatt, H.K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 1, 117129.CrossRefGoogle Scholar
Moffatt, H.K. 2014 Helicity and singular structures in fluid dynamics. Proc. Natl Acad. Sci. USA 111 (10), 36633670.CrossRefGoogle ScholarPubMed
Moffatt, H.K. & Tsinober, A. 1992 Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24 (1), 281312.CrossRefGoogle Scholar
Moreau, J.J. 1961 Constantes d'un îlot tourbillonnaire en fluide parfait barotrope. C. R. Hebd. Séances l'Acad. Sci. 252, 28102812.Google Scholar
de Moura, A.P.S. 2014 Strange eigenmodes and chaotic advection in open fluid flows. Eur. Phys. Lett. 106 (3), 34002.CrossRefGoogle Scholar
Neuman, S.P., Winter, C.L. & Newman, C.M. 1987 Stochastic theory of field-scale Fickian dispersion in anisotropic porous media. Water Resour. Res. 23 (3), 453466.CrossRefGoogle Scholar
Ottino, J.M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press.Google Scholar
Panton, R.L. 1978 Potential/complex-lamellar velocity decomposition and its relevance to turbulence. J. Fluid Mech. 88 (1), 97114.CrossRefGoogle Scholar
Piaggio, H.T.H. 1952 An Elementary Treatise on Differential Equations and their Applications. G. Bell and Sons.Google Scholar
Poincaré, H. 1893 Théorie des Tourbillons. Jacques Gabay.Google Scholar
Pollock, D.W. 1988 Semianalytical computation of path lines for finite-difference models. Groundwater 26 (6), 743750.CrossRefGoogle Scholar
Ravu, B., Rudman, M., Metcalfe, G., Lester, D.R. & Khakhar, D.V. 2016 Creating analytically divergence-free velocity fields from grid-based data. J. Comput. Phys. 323 (Suppl. C), 7594.CrossRefGoogle Scholar
Robinson, B.A., Dash, Z.V. & Srinivasan, G. 2010 A particle tracking transport method for the simulation of resident and flux-averaged concentration of solute plumes in groundwater models. Comput. Geosci. 14 (4), 779792.CrossRefGoogle Scholar
Salta, A. & Tataronis, J.A. 2000 Conditions for existence of orthogonal coordinate systems oriented by magnetic field lines. J. Geophys. Res. 105 (A6), 1305513062.CrossRefGoogle Scholar
Schlier, C. & Seiter, A. 2000 High-order symplectic integration: an assessment. Comput. Phys. Commun. 130 (1), 176189.CrossRefGoogle Scholar
Souzy, M., Lhuissier, H., Méheust, Y., Le Borgne, T. & Metzger, B. 2020 Velocity distributions, dispersion and stretching in three-dimensional porous media. J. Fluid Mech. 891, A16.CrossRefGoogle Scholar
Sposito, G. 1994 Steady groundwater flow as a dynamical system. Water Resour. Res. 30 (8), 23952401.CrossRefGoogle Scholar
Sposito, G. 1997 On steady flows with lamb surfaces. Intl J. Engng Sci. 35 (3), 197209.CrossRefGoogle Scholar
Sposito, G. 1998 A note on helicity conservation in steady fluid flows. J. Fluid Mech. 363, 325332.CrossRefGoogle Scholar
Sposito, G. 2001 Topological groundwater hydrodynamics. Adv. Water Resour. 24 (7), 793801.CrossRefGoogle Scholar
Suk, H. 2012 Practical implementation of new particle tracking method to the real field of groundwater flow and transport. Environ. Engng Sci. 29 (1), 7078.CrossRefGoogle ScholarPubMed
Turuban, R., Lester, D.R., Heyman, J., Le Borgne, T. & Méheust, Y. 2019 Chaotic mixing in crystalline granular media. J. Fluid Mech. 871, 562594.CrossRefGoogle Scholar
Turuban, R., Lester, D.R., Le Borgne, T. & Méheust, Y. 2018 Space-group symmetries generate chaotic fluid advection in crystalline granular media. Phys. Rev. Lett. 120 (2), 024501.CrossRefGoogle ScholarPubMed
Villermaux, E. 2012 Mixing by porous media. C. R. Méc. 340 (11–12), 933943.CrossRefGoogle Scholar
Villermaux, E. & Duplat, J. 2003 Mixing is an aggregation process. C. R. Méc. 331 (7), 515523.CrossRefGoogle Scholar
Wiggins, S. & Ottino, J.M. 2004 Foundations of chaotic mixing. Phil. Trans. R. Soc. Lond. A 362 (1818), 937970.CrossRefGoogle ScholarPubMed
Wuispel, G.R.W. 1995 Volume-preserving integrators. Phys. Lett. A 206 (1), 2630.CrossRefGoogle Scholar
Ye, Y., Chiogna, G., Cirpka, O.A., Grathwohl, P. & Rolle, M. 2015 Experimental evidence of helical flow in porous media. Phys. Rev. Lett. 115, 194502.CrossRefGoogle ScholarPubMed
Ye, Y., Chiogna, G., Lu, C. & Rolle, M. 2020 Plume deformation, mixing, and reaction kinetics: an analysis of interacting helical flows in three-dimensional porous media. Phys. Rev. E 102, 013110.CrossRefGoogle ScholarPubMed
Zijl, W. 1986 Numerical simulations based on stream functions and velocities in three—dimensional groundwater flow. J. Hydrol. 85 (3), 349365.CrossRefGoogle Scholar
Zijl, W. 1988 Generalized potential flow theory and direct calculation of velocities applied to the numerical solution of the Navier–Stokes and the Boussinesq equations. Intl J. Numer. Meth. Fluids 8 (3), 599612.CrossRefGoogle Scholar