Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:53:20.718Z Has data issue: false hasContentIssue false

Flow and streaming potential of an electrolyte in a channel with an axial temperature gradient

Published online by Cambridge University Press:  27 January 2017

Mathias Dietzel*
Affiliation:
Institute for Nano- and Microfluidics, Center of Smart Interfaces, TU Darmstadt, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany
Steffen Hardt
Affiliation:
Institute for Nano- and Microfluidics, Center of Smart Interfaces, TU Darmstadt, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany
*
Email address for correspondence: dietzel@nmf.tu-darmstadt.de

Abstract

The effect of an axial temperature gradient on the flow profile and the induced streaming potential of a pressure-driven symmetric electrolyte in a slit channel is investigated. Based on the non-isothermal Nernst–Planck equations, as well as the Poisson equation in the lubrication approximation, expressions for the ion distribution in the electric double layer (EDL) are derived. It is found that thermophoretic ion motion and a temperature-dependent electrophoretic ion mobility increase the local EDL thickness with temperature, whereas a temperature-dependent permittivity shrinks the EDL. Within the Debye–Hückel approximation, the Navier–Stokes equation with the corresponding electric body force terms is solved. Analytical expressions for the flow profile and the induced (streaming) field under non-isothermal conditions are derived. It is shown that for such a situation the induced electric field is the linear superposition of at least seven individual contributions. For very wide channels, only the thermoelectric field typically present in bulk electrolytes when subjected to a temperature gradient (Soret equilibrium) as well as the conventional pressure-induced streaming field are of importance. Counterintuitively, for the latter, while still being affected by the temperature dependence of the dielectric permittivity and local salt concentration, the temperature dependencies of the viscosity, Fickian diffusion coefficients and ion electromobilities exactly cancel each other. For narrow channels, five additional contributions become relevant, which – similar to the Soret voltage – do not vanish in the case that the externally applied pressure gradient is removed. The first is caused by selective thermo-electromigration driven by the interplay between the temperature-dependent electrophoretic ion mobility and the interaction of the ions with the surface wall charge. This non-advective effect is at its maximum under extreme confinement. For channels whose widths are of the same order as the EDL thickness, four thermoosmotic effects become significant. Besides the well-known thermoosmosis due to the temperature dependence of the dielectric permittivity in the (extended) Korteweg–Helmholtz force, it is demonstrated that – by contrast to isothermal conditions – a thermal gradient renders the ion cloud in the EDL out of mechanical equilibrium. In this context it is shown that a thermophoretic ion motion (i.e. the intrinsic Soret effect of the ions) and a temperature-dependent ion electromobility as well as a temperature-dependent permittivity not only cause an axial gradient of the EDL potential, but simultaneously lead to a pressure of thermal origin, which sets the fluid into an advective motion. Corresponding phenomena were not previously discussed in the literature and may be interpreted as an apparent, thermally induced slip velocity within the EDL. Subsequently, the ion advection affiliated with such thermoosmotic flow may induce a thermoelectric field of a similar order of magnitude to that caused by more conventional thermal effects.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agar, J. N. & Turner, J. C. R. 1960 Thermal diffusion in solutions of electrolytes. Proc. R. Soc. Lond. A 255, 307330.Google Scholar
Barz, D. P. J., Zadeh, H. F. & Ehrhard, P. 2011 Measurements and simulations of time-dependent flow fields within an electrokinetic micromixer. J. Fluid Mech. 676, 265293.CrossRefGoogle Scholar
Bonetti, M., Nakamae, S., Roger, M. & Guenoun, P. 2011 Huge Seebeck coefficients in nonaqueous electrolytes. J. Chem. Phys. 134, 114513.CrossRefGoogle ScholarPubMed
Buchner, R., Hefter, G. T. & May, P. M. 1999 Dielectric relaxation of aqueous NaCl solutions. J. Phys. Chem. A 103 (1), 19.CrossRefGoogle Scholar
Burgreen, D. & Nakache, F. R. 1964 Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68 (5), 10841091.CrossRefGoogle Scholar
Castellanos, A. 1998 Electrohydrodynamics (ed. Castellanos, A.). Springer.CrossRefGoogle Scholar
Daguji, H. 2009 Ion transport in nanofluidic channels. Chem. Soc. Rev. 39, 901911.CrossRefGoogle Scholar
Dariel, M. S. & Kedem, O. 1975 Thermoosmosis in semipermeable membranes. J. Phys. Chem. 79 (4), 336342.CrossRefGoogle Scholar
Derjaguin, B., Churaev, N. & Muller, V. 1987 Surface Forces. Plenum.CrossRefGoogle Scholar
Dietzel, M. & Hardt, S.2012 Streaming potential of an electrolyte in a microchannel with a lateral temperature gradient. In Proceedings of the 3rd Conference on Microfluidics, Heidelberg ( $\unicode[STIX]{x1D707}$ Flu12-108), vol. 39.Google Scholar
Dietzel, M. & Hardt, S. 2016 Thermoelectricity in confined liquid electrolytes. Phys. Rev. Lett. 116, 225901.CrossRefGoogle ScholarPubMed
Dreyer, W., Guhlke, C. & Müller, R. 2013 Overcoming the shortcomings of the Nernst–Planck model. Phys. Chem. Chem. Phys. 15, 70757086.CrossRefGoogle ScholarPubMed
Dukhin, S. S. 1993 Non-equilibrium electric surface phenomena. Adv. Colloid Interface Sci. 44, 1134.CrossRefGoogle Scholar
Fair, J. C. & Osterle, J. F. 1971 Reverse electrodialysis in charged capillary membranes. J. Chem. Phys. 54 (8), 33073316.CrossRefGoogle Scholar
Fitts, D. D. 1962 Non-equilibrium Thermodynamics. McGraw-Hill.Google Scholar
Fletcher, C. A. J. 1991 Springer Series in Computational Physics (ed. Chattot, J.-J., Fletcher, C. A. J., Glowinski, R., Hillebrandt, W., Holt, M., Hussaini, Y., Keller, H. B., Killeen, J., Meiron, D. I., Norman, M. L., Orszag, S. A., Roesner, K. G. & Rusanov, V. V.), vol. 1. Springer.Google Scholar
Gaeta, F. S., Ascolese, E., Bencivenga, U., Ortiz de Zárate, J. M., Pagliuca, N., Perna, G., Rossi, S. & Mita, D. G. 1992 Theories and experiments on nonisothermal matter transport in porous media. J. Phys. Chem. 96, 63426354.CrossRefGoogle Scholar
Ghonge, T., Chakraborty, J., Dey, R. & Chakraborty, S. 2013 Electrohydrodynamics within the electrical double layer in the presence of finite temperature gradients. Phys. Rev. E 88, 053020.Google ScholarPubMed
González, A., Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. 2006 Electrothermal flows generated by alternating and rotating electric fields in microsystems. J. Fluid Mech. 564, 415433.CrossRefGoogle Scholar
de Groot, S. R. & Mazur, P. 1984 Non-equilibrium Thermodynamics. Dover.Google Scholar
Grosu, F. P. & Bologa, M. K. 2010 Thermoelectrohydrodynamic methods of energy conversion. Surf. Eng. Appl. Electrochem. 46 (6), 582588.CrossRefGoogle Scholar
Guthrie, G., Wilson, J. N. & Schomaker, V. 1949 Theory of the thermal diffusion of electrolytes in a Clusius column. J. Chem. Phys. 17 (3), 310313.CrossRefGoogle Scholar
Haase, R. 1969 Thermodynamics of Irreversible Processes. Dover.Google Scholar
Hartung, M.2007 A detailed treatment of the measurement of transport coefficients in transient grating experiments. PhD thesis, Universität Bayreuth.Google Scholar
Helfand, E. 1960 Theory of heat of transport of electrolytic solutions. J. Chem. Phys. 32 (3), 857866.CrossRefGoogle Scholar
van der Heyden, F. H. J., Stein, D. & Dekker, C. 2005 Streaming currents in single nanofluidic channel. Phys. Rev. Lett. 95, 116104.CrossRefGoogle ScholarPubMed
Hills, G. J., Jacobs, P. W. M. & Lakshiminarayanaiah, N. 1957 Non-isothermal membrane potentials. Nature 179 (4550), 9697.CrossRefGoogle Scholar
Ishido, T., Mizutani, H. & Baba, K. 1983 Streaming potential observations, using geothermal wells and in situ electrokinetic coupling coefficients under high temperature. Tectonophysics 91, 89104.CrossRefGoogle Scholar
Kang, T. J., Fang, S., Kozlov, M. E., Haines, C. S., Li, N., Kim, Y. H., Chen, Y. & Baughman, R. H. 2012 Electrical power from nanotube and graphene electrochemical thermal energy harvester. Adv. Funct. Mater. 22, 477489.CrossRefGoogle Scholar
Keh, H. J. & Tseng, H. C. 2001 Transient electrokinetic flow in fine capillaries. J. Colloid Interface Sci. 242, 450459.CrossRefGoogle Scholar
Kim, M. J., Beskok, A. & Kihm, K. D. 2002 Electro-osmosis-driven micro-channel flows: a comparative study of microscopic particle image velocimetry measurements and numerical simulations. Exp. Fluids 33, 170180.CrossRefGoogle Scholar
Langmuir, I. 1938 The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates. J. Chem. Phys. 6, 873896.CrossRefGoogle Scholar
Leaist, D. G. 1990 Soret coefficients of mixed electrolytes. J. Solution Chem. 19, 110.CrossRefGoogle Scholar
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.Google Scholar
Levine, S., Marriott, J. R. & Robinson, K. 1975 Theory of electrokinetic flow in a narrow parallel-plate channel. J. Chem. Soc. Faraday Trans. 2 71, 111.CrossRefGoogle Scholar
Lide, D. R. 2009 CRC Handbook of Chemistry and Physics (ed. Lide, D. R.). CRC Press.Google Scholar
Light, T. S. & Licht, S. L. 1987 Conductivity and resistivity of water from the melting to critical points. Analyt. Chem. 59, 23272330.CrossRefGoogle Scholar
Mansouri, A., Bhattacharjee, S. & Kostiuk, L. W. 2007 Transient electrokinetic transport in a finite length microchannel: currents, capacitance, and an electrical analogy. J. Phys. Chem. B 111, 1283412843.CrossRefGoogle Scholar
Masliyah, J. H. & Bhattacharjee, S. 2006 Electrokinetics and Colloid Transport Phenomena. John Wiley & Sons.CrossRefGoogle Scholar
Maynes, D. & Webb, B. W. 2004 The effect of viscous dissipation in thermally fully-developed electro-osmotic heat transfer in microchannels. Intl J. Heat Mass Transfer 47, 987999.CrossRefGoogle Scholar
Nadler, B., Schuss, Z., Singer, A. & Eisenberg, R. S. 2004 Ionic diffusion through confined geometries: from Langevin equations to partial differential equations. J. Phys.: Condens. Matter 16, S2153S2165.Google Scholar
Oelkers, E. H. & Helgeson, H. C. 1989 Calculation of the transport properties of aqueous species at pressures to 5 kb and temperatures to 1000 °C. J. Solution Chem. 18 (7), 601640.CrossRefGoogle Scholar
Onsager, L. 1931 Reciprocal relations in irreversible processes: I. Phys. Rev. 37, 405426.CrossRefGoogle Scholar
Pascall, A. J. & Squires, T. M. 2011 Electrokinetics at liquid/liquid interfaces. J. Fluid Mech. 684, 163191.CrossRefGoogle Scholar
Piazza, R. 2004 ‘Thermal forces’: colloids in a temperature gradient. J. Phys.: Condens. Matter. 16, S4195S4211.Google Scholar
Reppert, P. M. & Morgan, F. D. 2003 Temperature-dependent streaming potentials: 1. Theory. J. Geophys. Res. 108 (B11), 2546.Google Scholar
Revil, A., Pezard, P. A. & Glover, P. W. J. 1999 Streaming potential in porous media: 1. Theory of zeta potential. J. Geophys. Res. 104 (B9), 2002120031.CrossRefGoogle Scholar
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.CrossRefGoogle Scholar
Sadeghi, A. & Saidi, M. H. 2010 Viscous dissipation effects on thermal transport characteristics of combined pressure and electroosmotically driven flow in microchannels. Intl J. Heat Mass Transfer 53, 37823791.CrossRefGoogle Scholar
Salata, O. V. 2005 Tools of nanotechnology: electrospray. Curr. Nanoscience 1, 2533.CrossRefGoogle Scholar
Sandbakk, K. D., Bentien, A. & Kjelstrup, S. 2013 Thermoelectric effects in ion conducting membranes and perspectives for thermoelectric energy conversion. J. Membr. Sci. 434, 1017.CrossRefGoogle Scholar
Sasidhar, V. & Ruckenstein, E. 1982 Anomalous effects during electrolyte osmosis across charged porous membranes. J. Colloid Interface Sci. 85 (2), 332361.CrossRefGoogle Scholar
Saville, D. A. 1977 Electrokinetic effects with small particles. Annu. Rev. Fluid Mech. 9, 321337.CrossRefGoogle Scholar
Sherwood, J. D. 1980 The primary electroviscous effect in a suspension of spheres. J. Fluid Mech. 101, 609629.CrossRefGoogle Scholar
Snowdon, P. N. & Turner, J. C. R. 1960a The concentration dependence of the Soret effect. Trans. Faraday Soc. 56 (10), 18121819.CrossRefGoogle Scholar
Snowdon, P. N. & Turner, J. C. R. 1960b The Soret effect in some 0.01 normal aqueous electrolytes. Trans. Faraday Soc. 56 (10), 14091418.CrossRefGoogle Scholar
Song, C. Y. & Wang, S. H. 2004 Analysis of rotation-driven electrokinetic flow in microscale gap regions of rotating disk system. J. Colloid Interface Sci. 269, 484498.CrossRefGoogle Scholar
Squires, T. M. & Bazant, M. Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217252.CrossRefGoogle Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: Microfluidics toward lab-on-chip. Annu. Rev. Fluid Mech. 36, 381411.CrossRefGoogle Scholar
Takeyama, N. & Nakashima, K. 1983 Thermodynamics in thermal diffusion in aqueous ion solutions. J. Phys. Soc. Japan 52 (8), 26992705.CrossRefGoogle Scholar
Takeyama, N. & Nakashima, K. 1988 Proportionality of intrinsic heat of transport to standard entropy of hydration for aqueous ions. J. Solution Chem. 17 (4), 305325.CrossRefGoogle Scholar
Tasaka, M. 1986 Thermal membrane potential and thermoosmosis across charged membranes. Pure Appl. Chem. 58 (12), 16371646.CrossRefGoogle Scholar
Tasaka, M. & Nagasawa, M. 1978 Thermoosmosis through charged membranes. Theoretical analysis of concentration dependence. Biophys. Chem. 8, 111116.CrossRefGoogle ScholarPubMed
Tyrrell, H. J. V., Taylor, D. A. & Williams, C. M. 1954 Free nerve endings as transducers of thermal stimuli. Nature 174 (4437), 918919.CrossRefGoogle ScholarPubMed
Vigolo, D., Buzzaccaro, S. & Piazza, R. 2010 Thermophoresis and thermoelectricity in surfactant solutions. Langmuir 26 (11), 77927801.CrossRefGoogle ScholarPubMed
Viovy, J. L. 2000 Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Rev. Mod. Phys. 72 (3), 813872.CrossRefGoogle Scholar
Wang, S. C., Chen, H. P., Lee, C. Y., Yu, C. C. & Chang, H. C. 2006 Ac electro-osmotic mixing induced by non-contact external electrodes. Biosens. Bioelectr. 22, 563567.CrossRefGoogle ScholarPubMed
Wong, J. & Melcher, J. R. 1969 Thermally induced electroconvection. Phys. Fluids 11, 2588.Google Scholar
Wood, J. A., Benneker, A. M. & Lammertink, R. G. H. 2016 Temperature effects on the electrohydrodynamic and electrokinetic behaviour of ion-selective nanochannels. J. Phys.: Condens. Matter. 28, 114002.Google ScholarPubMed
Würger, A. 2010 Thermal non-equilibrium transport in colloids. Rep. Prog. Phys. 73, 126601.CrossRefGoogle Scholar
Xie, Y., Sherwood, J. D., Shui, L., van den Berg, A. & Eijkel, J. C. T. 2011 Strong enhancement of streaming current power by application of two phase flow. Lab on a Chip 11, 40064011.CrossRefGoogle ScholarPubMed
Yang, J., Lu, F., Kostiuk, L. W. & Kwok, D. Y. 2003 Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J. Micromech. Microengng 13, 963970.CrossRefGoogle Scholar
Yariv, E., Schnitzer, O. & Frankel, I. 2011 Streaming-potential phenomena in the thin-Debye-layer limit. Part I. General Theory. J. Fluid Mech. 685, 306334.CrossRefGoogle Scholar
Yossifon, G., Frankel, I. & Miloh, T. 2006 On electro-osmotic flows through microchannel junctions. Phys. Fluids 18, 117108.CrossRefGoogle Scholar
Zhao, T. S. & Liao, Q. 2002 Thermal effects on electro-osmotic pumping of liquids in microchannel. J. Micromech. Microengng 12, 962970.CrossRefGoogle Scholar
Zhou, Y., Xie, Y., Yang, C. & Lam, Y. C. 2015 Thermal effect on microchannel electro-osmotic flow with consideration of thermodiffusion. Trans. ASME J. Heat Transfer 137, 091023.CrossRefGoogle Scholar