Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T04:00:54.030Z Has data issue: false hasContentIssue false

Effects of Reynolds number and Stokes number on particle-pair relative velocity in isotropic turbulence: a systematic experimental study

Published online by Cambridge University Press:  26 January 2018

Zhongwang Dou
Affiliation:
Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
Andrew D. Bragg
Affiliation:
Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
Adam L. Hammond
Affiliation:
Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
Zach Liang
Affiliation:
Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
Lance R. Collins
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
Hui Meng*
Affiliation:
Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
*
Email address for correspondence: huimeng@buffalo.edu

Abstract

The effects of Reynolds number ($R_{\unicode[STIX]{x1D706}}$) and Stokes number ($St$) on particle-pair relative velocity (RV) are investigated systematically using a recently developed planar four-frame particle tracking technique in a novel homogeneous and isotropic turbulence chamber. We compare the measured results with direct numerical simulation (DNS), verifying whether the conclusions of the DNS for simplified conditions and limited $R_{\unicode[STIX]{x1D706}}$ are still valid in reality. Two experiments are performed: varying $R_{\unicode[STIX]{x1D706}}$ between 246 and 357 at six $St$ values, and varying $St$ between 0.02 and 4.63 at five $R_{\unicode[STIX]{x1D706}}$ values. The measured mean inward particle-pair RV $\langle w_{r}^{-}\rangle$ as a function of separation distance $r$ is compared with the DNS under closely matched conditions. At all experimental conditions, an excellent agreement is achieved, except when the particle separation distance $r\lesssim 10\unicode[STIX]{x1D702}$ ($\unicode[STIX]{x1D702}$ is the Kolmogorov length scale), where the experimental $\langle w_{r}^{-}\rangle$ is consistently higher, possibly due to particle polydispersity and finite laser thickness in the experiments (Dou et al., arXiv:1712.07506, 2017). At any fixed $St,\langle w_{r}^{-}\rangle$ is essentially independent of $R_{\unicode[STIX]{x1D706}}$, echoing the DNS finding of Ireland et al. (J. Fluid Mech., vol. 796, 2016, pp. 617–658). At any fixed $R_{\unicode[STIX]{x1D706}}$, $\langle w_{r}^{-}\rangle$ increases with $St$ at small $r$, showing dominance of the path-history effect in the dissipation range when $St\gtrsim O(1)$, but decreases with $St$ at large $r$, indicating dominance of inertial filtering. We further compare the $\langle w_{r}^{-}\rangle$ and RV variance $\langle w_{r}^{2}\rangle$ from experiments with DNS and theoretical predictions by Pan & Padoan (J. Fluid Mech., vol. 661, 2010, pp. 73–107). For $St\lesssim 1$, experimental $\langle w_{r}^{-}\rangle$ and $\langle w_{r}^{2}\rangle$ match these values well at $r\gtrsim 10\unicode[STIX]{x1D702}$, but they are higher than both DNS and theory at $r\lesssim 10\unicode[STIX]{x1D702}$. For $St\gtrsim 1$, $\langle w_{r}^{-}\rangle$ from all three match well, except for $r\lesssim 10\unicode[STIX]{x1D702}$, for which experimental values are higher, while $\langle w_{r}^{2}\rangle$ from experiment and DNS are much higher than theoretical predictions. We discuss potential causes of these discrepancies. What this study shows is the first experimental validation of $R_{\unicode[STIX]{x1D706}}$ and $St$ effect on inertial particle-pair $\langle w_{r}^{-}\rangle$ in homogeneous and isotropic turbulence.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: 319 Latrobe Hall, Johns Hopkins University, Baltimore, MD 21218, USA

References

Ayala, O., Rosa, B., Wang, L.-P. & Grabowski, W. W. 2008 Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J. Phys. 10, 075015.Google Scholar
Ayyalasomayajula, S., Warhaft, Z. & Collins, L. R. 2008 Modeling inertial particle acceleration statistics in isotropic turbulence. Phys. Fluids 20, 095104.Google Scholar
Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2006 Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550, 349358.Google Scholar
Bec, J., Biferale, L., Lanotte, A. S., Scagliarini, A. & Toschi, F. 2010 Turbulent pair dispersion of inertial particles. J. Fluid Mech. 645, 497528.CrossRefGoogle Scholar
Bragg, A. D. & Collins, L. R. 2014a New insights from comparing statistical theories for inertial particles in turbulence: I. Spatial distribution of particles. New J. Phys. 16, 055013.Google Scholar
Bragg, A. D. & Collins, L. R. 2014b New insights from comparing statistical theories for inertial particles in turbulence: II. Relative velocities. New J. Phys. 16, 055014.Google Scholar
Bragg, A. D., Ireland, P. J. & Collins, L. R. 2015a Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence. Phys. Rev. E 92, 023029.Google Scholar
Bragg, A. D., Ireland, P. J. & Collins, L. R. 2015b On the relationship between the non-local clustering mechanism and preferential concentration. J. Fluid Mech. 780, 327343.Google Scholar
Bragg, A. D., Ireland, P. J. & Collins, L. R. 2016 Forward and backward in time dispersion of fluid and inertial particles in isotropic turbulence. Phys. Fluids 28, 013305.CrossRefGoogle Scholar
Collins, L. R. & Keswani, A. 2004 Reynolds number scaling of particle clustering in turbulent aerosols. New J. Phys. 6, 119.CrossRefGoogle Scholar
Cuzzi, J. N., Hogan, R. C., Paque, J. M. & Dobrovolskis, A. R. 2001 Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys. J. 546, 496.CrossRefGoogle Scholar
Dou, Z.2017 Experimental study of inertial particle-pair relative velocity in isotropic turbulence (order no. 10255106), Mechanical and Aerospace Engineering. University at Buffalo – SUNY, Buffalo, NY.Google Scholar
Dou, Z., Ireland, P. J., Bragg, A. D., Liang, Z., Collins, L. R. & Meng, H.2017 Particle-pair relative velocity measurement in high-Reynolds-number homogeneous and isotropic turbulence using 4-frame particle tracking velocimetry, arXiv:1712.07506.Google Scholar
Dou, Z., Pecenak, Z. K., Cao, L., Woodward, S. H., Liang, Z. & Meng, H. 2016 PIV measurement of high-Reynolds-number homogeneous and isotropic turbulence in an enclosed flow apparatus with fan agitation. Meas. Sci. Technol. 27, 035305.Google Scholar
Dullemond, C. & Dominik, C. 2005 Dust coagulation in protoplanetary disks: a rapid depletion of small grains. Astron. Astrophys. 434, 971986.CrossRefGoogle Scholar
Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.Google Scholar
Falkovich, G., Fouxon, A. & Stepanov, M. G. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419, 151154.CrossRefGoogle ScholarPubMed
Falkovich, G. & Pumir, A. 2007 Sling effect in collisions of water droplets in turbulent clouds. J. Atmos. Sci. 64, 44974505.Google Scholar
Gustavsson, K. & Mehlig, B. 2011 Distribution of relative velocities in turbulent aerosols. Phys. Rev. E 84, 045304.Google Scholar
Ijzermans, R. H. A., Meneguz, E. & Reeks, M. W. 2010 Segregation of particles in incompressible random flows: singularities, intermittency and random uncorrelated motion. J. Fluid Mech. 653, 99136.Google Scholar
Ireland, P. J., Bragg, A. D. & Collins, L. R. 2016a The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects. J. Fluid Mech. 796, 617658.Google Scholar
Ireland, P. M., Noda, M., Jarrett, E. D., Fujii, S., Nakamura, Y., Wanless, E. J. & Webber, G. B. 2016b Electrostatic formation of liquid marbles – influence of drop and particle size. Powder Technol. 303, 5558.Google Scholar
de Jong, J., Salazar, J. P. L. C., Woodward, S. H., Collins, L. R. & Meng, H. 2010 Measurement of inertial particle clustering and relative velocity statistics in isotropic turbulence using holographic imaging. Intl J. Multiphase Flow 36, 324332.Google Scholar
Laviéville, J., Deutsch, E. & Simonin, O.1995 Large eddy simulation of interactions between colliding particles and a homogeneous isotropic turbulence field. In ASME-Publications-Fed, vol. 228, pp. 347–358.Google Scholar
Laviéville, J., Simonin, O., Berlemont, A. & Chang, Z.1997 Validation of inter-particle collision models based on large eddy simulation in gas–solid turbulent homogeneous shear flow. In ASME FEDSM, pp. 22–26.Google Scholar
Pan, L. & Padoan, P. 2013 Turbulence-induced relative velocity of dust particles. I. Identical particles. Astrophys. J. 776, 12.CrossRefGoogle Scholar
Pan, L. B. & Padoan, P. 2010 Relative velocity of inertial particles in turbulent flows. J. Fluid Mech. 661, 73107.Google Scholar
Rosa, B., Parishani, H., Ayala, O., Grabowski, W. W. & Wang, L.-P. 2013 Kinematic and dynamic collision statistics of cloud droplets from high-resolution simulations. New J. Phys. 15, 045032.CrossRefGoogle Scholar
Salazar, J. P. L. C. & Collins, L. R. 2012a Inertial particle acceleration statistics in turbulence: effects of filtering, biased sampling, and flow topology. Phys. Fluids 24, 083302.Google Scholar
Salazar, J. P. L. C. & Collins, L. R. 2012b Inertial particle relative velocity statistics in homogeneous isotropic turbulence. J. Fluid Mech. 696, 4566.Google Scholar
Salazar, J. P. L. C., De Jong, J., Cao, L. J., Woodward, S. H., Meng, H. & Collins, L. R. 2008 Experimental and numerical investigation of inertial particle clustering in isotropic turbulence. J. Fluid Mech. 600, 245256.CrossRefGoogle Scholar
Saw, E.-W., Bewley, G. P., Bodenschatz, E., Ray, S. S. & Bec, J. 2014 Extreme fluctuations of the relative velocities between droplets in turbulent airflow. Phys. Fluids 26, 111702.CrossRefGoogle Scholar
Shaw, R. A. 2003 Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227.CrossRefGoogle Scholar
Siebert, H., Lehmann, K. & Wendisch, M. 2006 Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer. J. Atmos. Sci. 63, 14511466.Google Scholar
Simonin, O.2000 Statistical and continuum modelling of turbulent reactive particulate flows. Lecture Series, vol. 6.Google Scholar
Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.CrossRefGoogle Scholar
Wang, L. P., Wexler, A. S. & Zhou, Y. 2000 Statistical mechanical description and modelling of turbulent collision of inertial particles. J. Fluid Mech. 415, 117153.CrossRefGoogle Scholar
Wilkinson, M., Mehlig, B. & Bezuglyy, V. 2006 Caustic activation of rain showers. Phys. Rev. Lett. 97, 048501.Google Scholar
Wu, W., Soligo, G., Marchioli, C., Soldati, A. & Piomelli, U. 2017 Particle resuspension by a periodically forced impinging jet. J. Fluid Mech. 820, 284311.Google Scholar
Zaichik, L. I. & Alipchenkov, V. M. 2009 Statistical models for predicting pair dispersion and particle clustering in isotropic turbulence and their applications. New J. Phys. 11, 103018.Google Scholar
Zaichik, L. I., Simonin, O. & Alipchenkov, V. M. 2006 Collision rates of bidisperse inertial particles in isotropic turbulence. Phys. Fluids 18, 035110.Google Scholar
Zsom, A., Ormel, C. W., Guettler, C., Blum, J. & Dullemond, C. P. 2010 The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astron. Astrophys. 513, A57.CrossRefGoogle Scholar