Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T08:13:35.610Z Has data issue: false hasContentIssue false

Drag forces on sparsely packed cube arrays

Published online by Cambridge University Press:  18 October 2019

X. I. A. Yang
Affiliation:
Mechanical Engineering, Penn State University, State College, PA 16802, USA
H. H. A. Xu
Affiliation:
Mechanical Engineering, Penn State University, State College, PA 16802, USA
X. L. D. Huang
Affiliation:
Mechanical Engineering, Penn State University, State College, PA 16802, USA
M.-W. Ge*
Affiliation:
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, PR China
*
Email address for correspondence: gemingwei@ncepu.edu.cn

Abstract

Flow over aligned and staggered cube arrays is a classic model problem for rough-wall turbulent boundary layers. Earlier studies of this model problem mainly looked at rough surfaces with a moderate coverage density, i.e. $\unicode[STIX]{x1D706}_{p}>O(3\,\%)$, where $\unicode[STIX]{x1D706}_{p}$ is the surface coverage density and is defined to be the ratio between the area occupied by the roughness and the total ground area. At lower surface coverage densities, i.e. $\unicode[STIX]{x1D706}_{p}<O(3\,\%)$, it is conventionally thought that cubical roughness acts like isolated roughness elements; and that the single-cube drag coefficient, i.e. $C_{d}\equiv f/(\unicode[STIX]{x1D70C}U_{h}^{2}h^{2})$, equals $C_{R}$. Here, $f$ is the drag force on one cubical roughness element, $\unicode[STIX]{x1D70C}=\text{const.}$ is the fluid density, $h$ is the height of the cube, $U_{h}$ is the spatially and temporally averaged wind speed at the cube height, and $C_{R}$ is the drag coefficient of an isolated cube. In this work, we conduct large-eddy simulations and direct numerical simulations of flow over wall-mounted cubes with very low surface coverage densities, i.e. $0.08\,\%<\unicode[STIX]{x1D706}_{p}<4.4\,\%$. The large-eddy simulations are at nominally infinite Reynolds numbers. The results challenge the conventional thinking, and we show that, at very low surface coverage densities, the single-cube drag coefficient may increase as a function of $\unicode[STIX]{x1D706}_{p}$. Our analysis suggests that this behaviour may be attributed to secondary turbulent flows. Secondary turbulent flows are often found above spanwise-heterogeneous roughness. Although the roughness considered in this work is nominally homogeneous, the secondary flows in our simulations are very similar to those observed above spanwise-heterogeneous surface roughness. These secondary vortices redistribute the fluid momentum in the outer layer, leading to high-momentum pathways above the wall-mounted cubes and low-momentum pathways at the two sides of the wall-mounted cubes. As a result, the spatially and temporally averaged wind speed at the cube height, i.e. $U_{h}$, is an underestimate of the incoming flow to the cubes, which in turn leads to a large drag coefficient $C_{d}$.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akins, R. E., Peterka, J. A. & Cermak, J. E. 1977 Mean force and moment coefficients for buildings in turbulent boundary layers. J. Wind Engng Ind. Aerodyn. 2 (3), 195209.Google Scholar
Anderson, W., Barros, J. M., Christensen, K. T. & Awasthi, A. 2015 Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768, 316347.Google Scholar
Anderson, W., Yang, J., Shrestha, K. & Awasthi, A. 2018 Turbulent secondary flows in wall turbulence: vortex forcing, scaling arguments, and similarity solution. Environ. Fluid Mech. 18 (6), 13511378.Google Scholar
Arya, S. 1975 A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. J. Geophys. Res. 80 (24), 34473454.Google Scholar
Balakumar, P., Park, G. & Pierce, B. 2014 DNS, LES, and wall-modeled LES of separating flow over periodic hills. In Proceedings of the Summer Program, pp. 407415.Google Scholar
Barlow, J. F. & Coceal, O.2009 A review of urban roughness sublayer turbulence. Met Office Research and Development. Tech. Rep. 1, 527.Google Scholar
Barros, J. M. & Christensen, K. T. 2014 Observations of turbulent secondary flows in a rough-wall boundary layer. J. Fluid Mech. 748, R1.Google Scholar
Bermejo-Moreno, I., Campo, L., Larsson, J., Bodart, J., Helmer, D. & Eaton, J. K. 2014 Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations. J. Fluid Mech. 758, 562.Google Scholar
Bons, J. P. 2010 A review of surface roughness effects in gas turbines. Trans. ASME J. Turbomach. 132 (2), 021004.Google Scholar
Bou-Zeid, E., Meneveau, C. & Parlange, M. 2005 A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 025105.Google Scholar
Castillo, M. C., Inagaki, A. & Kanda, M. 2011 The effects of inner- and outer-layer turbulence in a convective boundary layer on the near-neutral inertial sublayer over an urban-like surface. Boundary-Layer Meteorol. 140 (3), 453469.Google Scholar
Cheng, H. & Castro, I. P. 2002 Near wall flow over urban-like roughness. Boundary-Layer Meteorol. 104 (2), 229259.Google Scholar
Cheng, H., Hayden, P., Robins, A. & Castro, I. 2007 Flow over cube arrays of different packing densities. J. Wind Engng Ind. Aerodyn. 95 (8), 715740.Google Scholar
Cheng, W.-C. & Porté-Agel, F. 2015 Adjustment of turbulent boundary-layer flow to idealized urban surfaces: a large-eddy simulation study. Boundary-Layer Meteorol. 155 (2), 249270.Google Scholar
Choi, H. & Moin, P. 2012 Grid-point requirements for large eddy simulation: Chapmans estimates revisited. Phys. Fluids 24 (1), 011702.Google Scholar
Chung, D., Chan, L., MacDonald, M., Hutchins, N. & Ooi, A. 2015 A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech. 773, 418431.Google Scholar
Coceal, O. & Belcher, S. 2004 A canopy model of mean winds through urban areas. Q. J. R. Meteorol. Soc. 130 (599), 13491372.Google Scholar
Coceal, O., Dobre, A. & Thomas, T. G. 2007a Unsteady dynamics and organized structures from dns over an idealized building canopy. Intl J. Climatol. 27 (14), 19431953.Google Scholar
Coceal, O., Dobre, A., Thomas, T. & Belcher, S. 2007b Structure of turbulent flow over regular arrays of cubical roughness. J. Fluid Mech. 589, 375409.Google Scholar
Coceal, O., Thomas, T., Castro, I. & Belcher, S. 2006 Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol. 121 (3), 491519.Google Scholar
ESDU 1986 Mean fluid forces and moments on rectangular prisms: surface-mounted structures in turbulent shear flow. Engng Sci. Data Item 8003.Google Scholar
Ferster, K. K., Kirsch, K. L. & Thole, K. A. 2018 Effects of geometry, spacing, and number of pin fins in additively manufactured microchannel pin fin arrays. Trans. ASME J. Turbomach. 140 (1), 011007.Google Scholar
Fishpool, G., Lardeau, S. & Leschziner, M. 2009 Persistent non-homogeneous features in periodic channel-flow simulations. Flow Turbul. Combust. 83 (3), 323342.Google Scholar
Giometto, M., Lozano-Duran, A., Park, G. & Moin, P. 2017 Three-dimensional transient channel flow at moderate Reynolds numbers: analysis and wall modeling. In Annual Research Briefs, pp. 6574. Center for Turbulence Research.Google Scholar
Graham, J. & Meneveau, C. 2012 Modeling turbulent flow over fractal trees using renormalized numerical simulation: alternate formulations and numerical experiments. Phys. Fluids 24 (12), 125105.Google Scholar
Harman, I. N. & Finnigan, J. J. 2007 A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol. 123 (2), 339363.Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.Google Scholar
Inagaki, A., Castillo, M. C. L., Yamashita, Y., Kanda, M. & Takimoto, H. 2012 Large-eddy simulation of coherent flow structures within a cubical canopy. Boundary-Layer Meteorol. 142 (2), 207222.Google Scholar
Jelly, T., Jung, S. & Zaki, T. 2014 Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26 (9), 095102.Google Scholar
Jiang, D., Jiang, W., Liu, H. & Sun, J. 2008 Systematic influence of different building spacing, height and layout on mean wind and turbulent characteristics within and over urban building arrays. Wind Struct. 11 (4), 275290.Google Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.Google Scholar
Joo, J., Medic, G., Philips, D. & Bose, S. 2014 Large-eddy simulation of a compressor rotor. In Proceedings of the Summer Program, p. 467.Google Scholar
von Kármán, T.1931 Mechanical similitude and turbulence, NACA Tech. Memorandum, Rep. No. 611.Google Scholar
Kawai, S. & Larsson, J. 2012 Wall-modeling in large eddy simulation: length scales, grid resolution, and accuracy. Phys. Fluids 24 (1), 015105.Google Scholar
Khalighi, Y., Ham, F., Nichols, J., Lele, S. & Moin, P. 2011 Unstructured large eddy simulation for prediction of noise issued from turbulent jets in various configurations. In 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), p. 2886.Google Scholar
Kirsch, K. L. & Thole, K. A. 2018 Isolating the effects of surface roughness versus wall shape in numerically optimized, additively manufactured micro cooling channels. Exp. Therm. Fluid Sci. 98, 227238.Google Scholar
Larsson, J., Kawai, S., Bodart, J. & Bermejo-Moreno, I. 2016 Large eddy simulation with modeled wall-stress: recent progress and future directions. Mech. Engng Rev. 3 (1), 15–00418.Google Scholar
Larsson, J., Laurence, S., Bermejo-Moreno, I., Bodart, J., Karl, S. & Vicquelin, R. 2015 Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part II: large eddy simulations. Combust. Flame 162 (4), 907920.Google Scholar
Lee, J., Jelly, T. O. & Zaki, T. A. 2015 Effect of Reynolds number on turbulent drag reduction by superhydrophobic surface textures. Flow Turbul. Combust. 95 (2–3), 277300.Google Scholar
Lee, J. H., Sung, H. J. & Krogstad, P.-Å 2011 Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397431.Google Scholar
Lele, S. K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26 (1), 211254.Google Scholar
Leonardi, S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.Google Scholar
Lien, F.-S. & Yee, E. 2004 Numerical modelling of the turbulent flow developing within and over a 3-D building array, Part I: a high-resolution Reynolds-averaged Navier–Stokes approach. Boundary-Layer Meteorol. 112 (3), 427466.Google Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to Re 𝜏 = 4200. Phys. Fluids 26 (1), 011702.Google Scholar
Macdonald, R. 2000 Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol. 97 (1), 2545.Google Scholar
MacDonald, M., Chung, D., Hutchins, N., Chan, L., Ooi, A. & García-Mayoral, R. 2016 The minimal channel: a fast and direct method for characterising roughness. J. Phys.: Conf. Ser. 708, 012010.Google Scholar
MacDonald, M., Chung, D., Hutchins, N., Chan, L., Ooi, A. & García-Mayoral, R. 2017 The minimal-span channel for rough-wall turbulent flows. J. Fluid Mech. 816, 542.Google Scholar
Macdonald, R., Griffiths, R. & Hall, D. 1998 An improved method for the estimation of surface roughness of obstacle arrays. Atmos. Environ. 32 (11), 18571864.Google Scholar
Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197 (1), 215240.Google Scholar
Martilli, A. & Santiago, J. L. 2007 CFD simulation of airflow over a regular array of cubes. Part II: analysis of spatial average properties. Boundary-Layer Meteorol. 122 (3), 635654.Google Scholar
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.Google Scholar
Meinders, E. & Hanjalić, K. 1999 Vortex structure and heat transfer in turbulent flow over a wall-mounted matrix of cubes. Intl J. Heat Fluid Flow 20 (3), 255267.Google Scholar
Meinhart, C. D. & Adrian, R. J. 1995 On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7 (4), 694696.Google Scholar
Mejia-Alvarez, R. & Christensen, K. 2010 Low-order representations of irregular surface roughness and their impact on a turbulent boundary layer. Phys. Fluids 22 (1), 015106.Google Scholar
Mejia-Alvarez, R. & Christensen, K. 2013 Wall-parallel stereo particle-image velocimetry measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness. Phys. Fluids 25 (11), 115109.Google Scholar
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32 (1), 132.Google Scholar
Millward-Hopkins, J., Tomlin, A., Ma, L., Ingham, D. & Pourkashanian, M. 2011 Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights. Boundary-Layer Meteorol. 141 (3), 443465.Google Scholar
Moin, P. 2010 Fundamentals of Engineering Numerical Analysis. Cambridge University Press.Google Scholar
Moody, L. F. 1947 An approximate formula for pipe friction factors. Trans. ASME 69 (12), 10051011.Google Scholar
Nakagawa, H. 2017 Turbulence in Open Channel Flows. Routledge.Google Scholar
Nikuradse, J. 1930 Investigation of turbulent flow in tubes of non-circular cross section. Engng Archive (Ingen. Arch.) 1, 306332.Google Scholar
Nugroho, B., Hutchins, N. & Monty, J. 2013 Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Intl J. Heat Fluid Flow 41, 90102.Google Scholar
Park, G. I. 2017 Wall-modeled large-eddy simulation of a high Reynolds number separating and reattaching flow. AIAA J. 55, 37093721.Google Scholar
Park, G. I. & Moin, P. 2014 An improved dynamic non-equilibrium wall-model for large eddy simulation. Phys. Fluids 26 (1), 3748.Google Scholar
Perret, L., Piquet, T., Basley, J. & Mathis, R.2017 Effects of plan area densities of cubical roughness elements on turbulent boundary layers. In ScienceConf, CFM.Google Scholar
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37 (2), 383413.Google Scholar
Raupach, M. 1992 Drag and drag partition on rough surfaces. Boundary-Layer Meteorol. 60 (4), 375395.Google Scholar
Raupach, M., Antonia, R. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44 (1), 125.Google Scholar
Reynolds, R., Hayden, P., Castro, I. & Robins, A. 2007 Spanwise variations in nominally two-dimensional rough-wall boundary layers. Exp. Fluids 42 (2), 311320.Google Scholar
Schlichting, H. & Gersten, K. 2016 Boundary-Layer Theory. Springer.Google Scholar
Schultz, M. P. & Flack, K. A. 2009 Turbulent boundary layers on a systematically varied rough wall. Phys. Fluids 21 (1), 015104.Google Scholar
Shao, Y. & Yang, Y. 2005 A scheme for drag partition over rough surfaces. Atmos. Environ. 39 (38), 73517361.Google Scholar
Shao, Y. & Yang, Y. 2008 A theory for drag partition over rough surfaces. J. Geophys. Res. 113, F02S05.Google Scholar
de Silva, C. M., Hutchins, N. & Marusic, I. 2016 Uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 786, 309331.Google Scholar
Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E. & Mavriplis, D.2014 CFD vision 2030 study: a path to revolutionary computational aerosciences. Technical Report, NASA Langley Research Center, NASA/CR-2014-218178. See http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140003093.pdf/.Google Scholar
Squire, D., Morrill-Winter, C., Hutchins, N., Schultz, M., Klewicki, J. & Marusic, I. 2016 Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J. Fluid Mech. 795, 210240.Google Scholar
Stevens, R. J., Wilczek, M. & Meneveau, C. 2014 Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech. 757, 888907.Google Scholar
Stoesser, T., Mathey, F., Frohlich, J. & Rodi, W. 2003 Les of flow over multiple cubes. Ercoftac Bull. 56, 1519.Google Scholar
Taylor, R., Coleman, H. & Hodge, B. 1985 Prediction of turbulent rough-wall skin friction using a discrete element approach. Trans. ASME J. Fluids Engng 107 (2), 251257.Google Scholar
Vanderwel, C. & Ganapathisubramani, B. 2015 Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers. J. Fluid Mech. 774, R2.Google Scholar
Vermaas, D., Uijttewaal, W. & Hoitink, A. 2011 Lateral transfer of streamwise momentum caused by a roughness transition across a shallow channel. Water Resour. Res. 47, W02530.Google Scholar
Wang, Z.-Q. & Cheng, N.-S. 2005 Secondary flows over artificial bed strips. Adv. Water Resour. 28 (5), 441450.Google Scholar
Williamson, J. 1980 Low-storage Runge–Kutta schemes. J. Comput. Phys. 35 (1), 4856.Google Scholar
Willingham, D., Anderson, W., Christensen, K. T. & Barros, J. M. 2014 Turbulent boundary layer flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization. Phys. Fluids 26 (2), 025111.Google Scholar
Xie, Z. & Castro, I. P. 2006 Les and rans for turbulent flow over arrays of wall-mounted obstacles. Flow Turbul. Combust. 76 (3), 291312.Google Scholar
Yang, X. I. A. 2016 On the mean flow behaviour in the presence of regional-scale surface roughness heterogeneity. Boundary-Layer Meteorol. 161 (1), 127143.Google Scholar
Yang, X. I. A. & Abkar, M. 2018 A hierarchical random additive model for passive scalars in wall-bounded flows at high Reynolds numbers. J. Fluid Mech. 842, 354380.Google Scholar
Yang, J. & Anderson, W. 2018 Numerical study of turbulent channel flow over surfaces with variable spanwise heterogeneities: topographically-driven secondary flows affect outer-layer similarity of turbulent length scales. Flow Turbul. Combust. 100 (1), 117.Google Scholar
Yang, X., Bose, S. & Moin, P. 2017a A physics-based interpretation of the slip-wall LES model. In Annual Research Briefs, pp. 6574. Center for Turbulence Research.Google Scholar
Yang, X. I. A. & Meneveau, C. 2016 Large eddy simulations and parameterisation of roughness element orientation and flow direction effects in rough wall boundary layers. J. Turbul. 17 (11), 10721085.Google Scholar
Yang, X. I. A. & Meneveau, C. 2017 Modelling turbulent boundary layer flow over fractal-like multiscale terrain using large-eddy simulations and analytical tools. Phil. Trans. R. Soc. Lond. A 375 (2091), 20160098.Google Scholar
Yang, X. I. A., Park, G. I. & Moin, P. 2017b Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations. Phys. Rev. Fluids 2 (10), 104601.Google Scholar
Yang, X. I. A., Sadique, J., Mittal, R. & Meneveau, C. 2016 Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J. Fluid Mech. 789, 127165.Google Scholar
You, D. & Moin, P. 2007 A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Phys. Fluids 19 (6), 065110.Google Scholar