Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T12:54:23.210Z Has data issue: false hasContentIssue false

Analytic solution for pulse wave propagation in flexible tubes with application to a patient-specific arterial tree

Published online by Cambridge University Press:  19 December 2023

Peishuo Wu
Affiliation:
Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China
Chi Zhu*
Affiliation:
Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing 100871, PR China Nanchang Innovation Institute, Peking University, Nanchang 330008, PR China
*
Email address for correspondence: chi.zhu@pku.edu.cn

Abstract

In this paper, we present an analytic solution for pulse wave propagation in a flexible arterial model with tapering, physiological boundary conditions and variable wall properties (wall elasticity and thickness). The change of wall properties follows a profile that is proportional to $r^\alpha$, where $r$ represents the lumen radius and $\alpha$ is a material coefficient. The cross-sectionally averaged velocity and pressure are obtained by solving a hyperbolic system derived from the mass and momentum conservations, and they are expressed in Bessel functions of order $(4-\alpha )/(3-\alpha )$ and $1/(3-\alpha )$, respectively. The solution is successfully validated by comparing it with numerical results from three-dimensional (3-D) fluid–structure interaction simulations. Subsequently, the solution is employed to study pulse wave propagation in an arterial model, revealing that the wall properties and the physiological outlet boundary conditions, such as the resistor–capacitor–resistor (RCR) model, play a crucial role in characterizing the input impedance and reflection coefficient. At low-frequency range, the input impedance is found to be insensitive to the wall properties and is primarily determined by the RCR parameters. At high-frequency range, the input impedance oscillates around the local characteristic impedance, and the oscillation amplitude varies non-monotonically with $\alpha$. Expressions for the input impedance at both low-frequency and high-frequency limits are presented. This analytic solution is also successfully applied to model flow inside a patient-specific arterial tree, with the maximum relative errors in pressure and flow rate never exceeding $1.6\,\%$ and $9.0\,\%$ when compared with results from 3-D numerical simulations.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullateef, S., Mariscal-Harana, J. & Khir, A.W. 2021 Impact of tapering of arterial vessels on blood pressure, pulse wave velocity, and wave intensity analysis using one-dimensional computational model. Intl J. Numer. Meth. Biomed. Engng 37 (11), e3312.CrossRefGoogle ScholarPubMed
Abramowitz, M. & Stegun, I.A. 1948 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55. US Government Printing Office.Google Scholar
Alastruey, J., Khir, A.W., Matthys, K.S., Segers, P., Sherwin, S.J., Verdonck, P.R., Parker, K.H. & Peiró, J. 2011 Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. J. Biomech. 44 (12), 22502258.CrossRefGoogle Scholar
Alastruey, J., Parker, K.H. & Sherwin, S.J. 2012 Arterial pulse wave haemodynamics. In 11th International Conference on Pressure Surges, pp. 401–443. Lisbon.Google Scholar
Atabek, H.B. & Lew, H.S. 1966 Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube. Biophys. J. 6 (4), 481503.CrossRefGoogle Scholar
Bessems, D., Giannopapa, C.G., Rutten, M.C.M. & van de Vosse, F.N. 2008 Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels. J. Biomech. 41 (2), 284291.CrossRefGoogle ScholarPubMed
BodyParts3D 2011 © The database center for life science licensed under CC attribution-share alike 2.1 Japan.Google Scholar
Bowman, F. 2012 Introduction to Bessel Functions. Courier Corporation.Google Scholar
Charlton, P.H., Mariscal Harana, J., Vennin, S., Li, Y., Chowienczyk, P. & Alastruey, J. 2019 Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. Am. J. Physiol. Heart Circ. Physiol. 317 (5), H1062H1085.CrossRefGoogle ScholarPubMed
Evans, R.L. 1960 Pulsatile flow through tapered distensible vessels, reflexions, and the Hosie phenomenon. Nature 186 (4721), 290291.CrossRefGoogle Scholar
Figueroa, C.A., Taylor, C.A. & Marsden, A.L. 2017 Blood flow. In Encyclopedia of Computational Mechanics Second Edition (ed. E. Stein, R. de Borst & T.J.R. Hughes), pp. 1–31. John Wiley & Sons.CrossRefGoogle Scholar
Figueroa, C.A., Vignon-Clementel, I.E., Jansen, K.E., Hughes, T.J.R. & Taylor, C.A. 2006 A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Meth. Appl. Mech. Engng 195 (41–43), 56855706.CrossRefGoogle Scholar
Filonova, V., Arthurs, C.J., Vignon-Clementel, I.E. & Figueroa, C.A. 2020 Verification of the coupled-momentum method with Womersley's Deformable Wall analytical solution. Intl J. Numer. Meth. Biomed. Engng 36 (2), e3266.CrossRefGoogle ScholarPubMed
Flores, J., Alastruey, J. & Corvera Poiré, E. 2016 A novel analytical approach to pulsatile blood flow in the arterial network. Ann. Biomed. Engng 44 (10), 30473068.CrossRefGoogle ScholarPubMed
Flores, J., Corvera, E., Chowienczyk, P. & Alastruey, J. 2021 Estimating central pulse pressure from blood flow by identifying the main physical determinants of pulse pressure amplification. Front. Physiol. 12, 608098.CrossRefGoogle Scholar
Hino, M., Sawamoto, M. & Takasu, S. 1976 Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech. 75 (2), 193207.CrossRefGoogle Scholar
Korteweg, D.J. 1878 Over Voortplantings-Snelheid van Golven in Elastische Buizen, vol. 1. Van Doesburgh.Google Scholar
Lighthill, J. 2001 Waves in Fluids. Cambridge University Press.Google Scholar
Lighthill, S.J. 1975 Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Merkli, P. & Thomann, H. 1975 Transition to turbulence in oscillating pipe flow. J. Fluid Mech. 68 (3), 567576.CrossRefGoogle Scholar
Mirramezani, M. & Shadden, S.C. 2022 Distributed lumped parameter modeling of blood flow in compliant vessels. J. Biomech. 140, 111161.CrossRefGoogle ScholarPubMed
Moens, A.I. 1878 Die Pulscurve. Brill.Google Scholar
Murgo, J.P., Westerhof, N., Giolma, J.P. & Altobelli, S.A. 1980 Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62 (1), 105116.CrossRefGoogle ScholarPubMed
Myers, L.J. & Capper, W.L. 2004 Exponential taper in arteries: an exact solution of its effect on blood flow velocity waveforms and impedance. Med. Engng Phys. 26 (2), 147155.CrossRefGoogle ScholarPubMed
Mynard, J.P. & Smolich, J.J. 2015 One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation. Ann. Biomed. Engng 43 (6), 14431460.CrossRefGoogle ScholarPubMed
Nichols, W.W., Conti, C.R., Walker, W.E. & Milnor, W.R. 1977 Input impedance of the systemic circulation in man. Circ. Res. 40 (5), 451458.CrossRefGoogle ScholarPubMed
Olufsen, M.S. 1999 Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. Heart Circ. Physiol. 276 (1), H257H268.CrossRefGoogle ScholarPubMed
Papadakis, G. 2011 New analytic solutions for wave propagation in flexible, tapered vessels with reference to mammalian arteries. J. Fluid Mech. 689, 465488.CrossRefGoogle Scholar
Papadakis, G. & Raspaud, J. 2019 Wave propagation in stenotic vessels; theoretical analysis and comparison between 3D and 1D fluid–structure-interaction models. J. Fluids Struct. 88, 352366.CrossRefGoogle Scholar
Patel, D.J., De Freitas, F.M., Greenfield, J.C. & Fry, D.L. 1963 Relationship of radius to pressure along the aorta in living dogs. J. Appl. Physiol. 18 (6), 11111117.CrossRefGoogle ScholarPubMed
Reymond, P., Merenda, F., Perren, F., Rüfenacht, D. & Stergiopulos, N. 2009 Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297 (1), H208H222.CrossRefGoogle ScholarPubMed
Safar, M.E., Levy, B.I. & Struijker-Boudier, H. 2003 Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 107 (22), 28642869.CrossRefGoogle ScholarPubMed
Segers, P. & Verdonck, P. 2000 Role of tapering in aortic wave reflection: hydraulic and mathematical model study. J. Biomech. 33 (3), 299306.CrossRefGoogle ScholarPubMed
Sherwin, S.J., Franke, V., Peiró, J. & Parker, K. 2003 One-dimensional modelling of a vascular network in space-time variables. J. Engng Math. 47 (3/4), 217250.CrossRefGoogle Scholar
Taylor, M.G. 1966 The input impedance of an assembly of randomly branching elastic tubes. Biophys. J. 6 (1), 2951.CrossRefGoogle ScholarPubMed
Valdez-Jasso, D., Haider, M.A., Banks, H.T., Santana, D.B., German, Y.Z., Armentano, R.L. & Olufsen, M.S. 2009 Analysis of viscoelastic wall properties in ovine arteries. IEEE Trans. Biomed. Engng 56 (2), 210219.CrossRefGoogle ScholarPubMed
van de Vosse, F.N. & Stergiopulos, N. 2011 Pulse wave propagation in the arterial tree. Annu. Rev. Fluid Mech. 43 (1), 467499.CrossRefGoogle Scholar
Vlachopoulos, C., O'Rourke, M. & Nichols, W.W. 2011 McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. CRC Press.CrossRefGoogle Scholar
Westerhof, N., Lankhaar, J.-W. & Westerhof, B.E. 2009 The arterial windkessel. Med. Biol. Engng Comput. 47 (2), 131141.CrossRefGoogle ScholarPubMed
Westerhof, N., Sipkema, P., Bos, G.C.V.D. & Elzinga, G. 1972 Forward and backward waves in the arterial system. Cardiovasc. Res. 6 (6), 648656.CrossRefGoogle ScholarPubMed
Westerhof, N., Stergiopulos, N., Noble, M.I.M. & Westerhof, B.E. 2010 Snapshots of Hemodynamics: an Aid for Clinical Research and Graduate Education, vol. 7. Springer.CrossRefGoogle Scholar
Wiens, T. & Etminan, E. 2021 An analytical solution for unsteady laminar flow in tubes with a tapered wall thickness. Fluids 6 (5), 170.CrossRefGoogle Scholar
Willemet, M., Chowienczyk, P. & Alastruey, J. 2015 A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness. Am. J. Physiol. Heart Circ. Physiol. 309 (4), H663H675.CrossRefGoogle ScholarPubMed
Womersley, J.R. 1955 XXIV. Oscillatory motion of a viscous liquid in a thin-walled elastic tube—I: the linear approximation for long waves. Lond. Edinb. Dublin Philos. Mag. J. Sci. 46 (373), 199221.CrossRefGoogle Scholar
Womersley, J.R. 1957 Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. Phys. Med. Biol. 2 (2), 178187.CrossRefGoogle Scholar
Xiao, N., Alastruey, J. & Alberto Figueroa, C. 2014 A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Intl J. Numer. Meth. Biomed. Engng 30 (2), 204231.CrossRefGoogle ScholarPubMed
Zhu, C., Vedula, V., Parker, D., Wilson, N., Shadden, S. & Marsden, A. 2022 svFSI: a multiphysics package for integrated cardiac modeling. J. Open Source Softw. 7 (78), 4118.CrossRefGoogle Scholar
Zimmermann, J., Loecher, M., Kolawole, F.O., Bäumler, K., Gifford, K., Dual, S.A., Levenston, M., Marsden, A.L. & Ennis, D.B. 2021 On the impact of vessel wall stiffness on quantitative flow dynamics in a synthetic model of the thoracic aorta. Sci. Rep. 11 (1), 6703.CrossRefGoogle Scholar