Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T05:00:57.290Z Has data issue: false hasContentIssue false

Perinatal and post-weaning exposure to a high-fat diet causes histomorphometric, neuroplastic, and histopathological changes in the rat ileum

Published online by Cambridge University Press:  08 September 2022

Gabriele S. Cordeiro*
Affiliation:
Federal University of Bahia, School of Nutrition, Graduate Program in Food, Nutrition and Health, Salvador, BA, Brazil
Marcelo B. Góis
Affiliation:
Federal University of Recôncavo of Bahia; Institute of Health Sciences, Universidade Federal da Bahia and Graduate Program in Regional Development and Environment, Maria Milza College, Salvador, Bahia, Brazil
Lucimeire S. Santos
Affiliation:
Federal University of Bahia, School of Nutrition, Graduate Program in Food, Nutrition and Health, Salvador, BA, Brazil
Djane A. Espírito-Santo
Affiliation:
Federal University of Bahia, School of Nutrition, Graduate Program in Food, Nutrition and Health, Salvador, BA, Brazil
Rafael T. Silva
Affiliation:
Federal University of Bahia, School of Nutrition, Graduate Program in Food, Nutrition and Health, Salvador, BA, Brazil
Márcia U. Pereira
Affiliation:
Federal University of Bahia, School of Nutrition, Graduate Program in Food, Nutrition and Health, Salvador, BA, Brazil
Jean N. Santos
Affiliation:
Federal University of Bahia, School of Odontology, Salvador, Bahia, Brazil
Maria E. P. Conceição-Machado
Affiliation:
Federal University of Bahia, School of Nutrition, Graduate Program in Food, Nutrition and Health, Salvador, BA, Brazil
Tereza C. B. J. Deiró
Affiliation:
Federal University of Bahia, School of Nutrition, Graduate Program in Food, Nutrition and Health, Salvador, BA, Brazil
Jairza M. Barreto-Medeiros
Affiliation:
Federal University of Bahia, School of Nutrition, Graduate Program in Food, Nutrition and Health, Salvador, BA, Brazil
*
Address for correspondence: Gabriele dos Santos Cordeiro, Federal University of Bahia, School of Nutrition, Graduate Program in Food, Nutrition and Health, Salvador, BA, Brazil. Basílio da Gama Street - s/n - Campus Canela - Salvador - Bahia - Brazil, CEP - 40.110-907. Email: gabriele.cordeiro@ufba.br

Abstract

Exposure to a diet with a high saturated fat content can influence the characteristics of the gastrointestinal tract, causing losses in the absorption of nutrients and favoring the appearance of diseases. The objective was to assess the effects of a high-fat diet (HFD) in the perinatal (pregnancy and lactation) and post-weaning period on the histomorphometry, neuroplasticity, and histopathology of the ileum. Wistar rats were divided into four subgroups: Control/Control (CC, n = 10) rats fed a control diet (C) throughout the trial period; Control/HFD (CH, n = 9) rats fed diet C (perinatal) and HFD after weaning; HFD/Control (HC, n = 10) rats fed HFD (perinatal) and diet C (post-weaning); HFD/HFD (HH, n = 9) rats fed HFD throughout the experimental period. There was atrophy of the Ileum wall with a reduction in the muscular tunic, submucosa, and mucosa thickness in the HH group of 37%, 28%, and 46%, respectively (p < 0.0001). The depth of the crypts decreased by 29% (p < 0.0001) and height increased by 5% (p < 0.0013). Villus height decreased by 41% and 18% in HH and HC groups (p < 0.0001) and width decreased by 11% in the HH (p < 0.0001). The height of the enterocytes decreased by 18% in the HH (p < 0.0001). There was a decrease in the area of the myenteric and submucosal plexus ganglia in the HH and HC groups (p < 0.0001). The number, occupation, and granules of Paneth cells increased in the HH and HC groups (p < 0.0001). Intraepithelial lymphocytes (IELs) increased in all groups exposed to the HFD. Goblet cells decreased in groups CH and HH (p < 0.0001). The evidence from this study suggests that the HFD had altered the histomorphometry, neuroplasticity, and histopathology of the ileum of the rats.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press in association with International Society for Developmental Origins of Health and Disease

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mello, RO, Silva, CMG, Fonte, FP, et al. Evaluation of the number of goblet cells in crypts of the colonic mucosa with and without fecal transit. Rev Col Bras Cir. 2012; 39(2), 139145.CrossRefGoogle ScholarPubMed
Bischoff, GBarbara, Buurman, W, Ockhuizen, T, et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol. 2014; 14(1), 125. DOI 10.1186/s12876-014-0189-7.CrossRefGoogle ScholarPubMed
Hamilton, MK, Boudry, G, Lemay, DG, Raybould, HE. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol. 2015; 308(10), 840851. DOI 10.1152/ajpgi.00029.2015.CrossRefGoogle ScholarPubMed
Lee, J-C, Lee, H-Y, Kim, TK, et al. Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis. PLoS ONE. 2017; 12(11), 127. DOI 10.1371/journal.pone.0187515.Google ScholarPubMed
Caruso, M, Demonte, A. Histomorphometry of the small intestine of rats submitted to different proteic sources. Alim. Nutr. Araraquara. 2005; 16, 131136.Google Scholar
Navarrete, J, Vásquez, B, Sol, MD. Morphoquantitative analysis of the ileum of C57BL/6 mice (Mus musculus) fed with a high-fat diet. Int J Clin Exp Pathol. 2015; 8, 1464914657.Google ScholarPubMed
Umekawa, T, Sugiyama, T, Du, Q, et al. A maternal mouse diet with moderately high-fat levels does not lead to maternal obesity but causes mesenteric adipose tissue dysfunction in male offspring. J Nutr Biochem. 2015; 26(3), 259266. DOI 10.1016/j.jnutbio.2014.10.012.CrossRefGoogle Scholar
Natali, MRM, Neto, MHM, Orsie, AM. Effects of hypoproteic diet supply on adult wistar rats (Rattus norvegicus). Acta Scientiarum. 2000; 22, 567571.Google Scholar
Hermes, C, Azevedo, JF, Araújo, EJA, Sant’Ana, DMG. Intestinal ascending colon morphometrics in rats submitted to severe protein malnutrition. Int J Morphol. 2008; 26(1), 511.CrossRefGoogle Scholar
Bruce-Keller, AJ, Fernandez-Kim, SO, Townsend, RL, et al. Maternal obese-type gut microbiota differentially impact cognition, anxiety and compulsive behavior in male and female offspring in mice. PLoS ONE. 2017; 12(4), 120. DOI 10.1371/journal.pone.0175577.CrossRefGoogle ScholarPubMed
Ma, J, Prince, AL, Bader, D, et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat Commun. 2014; 5, 111.CrossRefGoogle Scholar
Carabotti, M, Scirocco, A, Maselli, MA, et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015; 28, 203209.Google ScholarPubMed
Srugo, SA, Bloise, E, Nguyen, TT-TN, Connor, KL. Impact of maternal malnutrition on gut barrier defense: implications for pregnancy health and fetal development. Nutrients. 2019; 11(6), 1375. DOI 10.3390/nu11061375.CrossRefGoogle ScholarPubMed
Ye, L, Srinivasan, S. Enteric neuronal degeneration: is it due to your mother’s diet? Neuroscience. 2018; 393(211), 366368. DOI 10.1016/j.neuroscience.2018.10.017.CrossRefGoogle ScholarPubMed
Stenkamp-Strahm, CM, Nyavor, YEA, Kappmeyer, AJ, Horton, S, Gericke, M, Balemba, OB. Prolonged high fat diet ingestion, obesity, and type 2 diabetes symptoms correlate with phenotypic plasticity in myenteric neurons and nerve damage in the mouse duodenum. Cell Tissue Res. 2015; 361, 411426. DOI 10.1007/s00441-015-2132-9.CrossRefGoogle ScholarPubMed
McMenamin, CA, Clyburn, C, Browning, KN. High fat diet during the perinatal period induces loss of myenteric nitrergic neurons and increases enteric glial density, prior to the development of obesity. Neuroscience. 2018; 393, 369380. DOI 10.1016/j.neuroscience.2018.09.033.CrossRefGoogle Scholar
Giaroni, C, De Ponti, F, Cosentino, M, Lecchini, S, Frigo, G. Plasticity in the enteric nervous system. Gastroenterology. 1999; 6(6), 14381458. DOI 10.1016/s0016-5085(99)70295-7.CrossRefGoogle Scholar
Lomax, AE, Fernández, E, Sharkey, KA. Plasticity of the enteric nervous system during intestinal inflammation. Neurogastroenterol Motil. 2005; 17(1), 415. DOI 10.1111/j.1365-2982.2004.00607.x.CrossRefGoogle ScholarPubMed
Mawe, GM, Strong, DS, Sharkey, KA. Plasticity of enteric nerve functions in the inflamed and postinflamed gut. Neurogastroenterol Motil. 2009; 21(5), 481491. DOI 10.1111/j.1365-2982.2009.01291.x.CrossRefGoogle ScholarPubMed
Vergnolle, N, Cirillo, C. Neurons and glia in the enteric nervous system and epithelial barrier function. Physiology (Bethesda). 2018; 33(4), 269280. DOI 10.1152/physiol.00009.2018.Google ScholarPubMed
Cameron, HL, Perdue, MH. Muscarinic acetylcholine receptor activation increases transcellular transport of macromolecules across mouse and human intestinal epithelium in vitro. Neurogastroenterol Motil. 2007; 19(1), 4756. DOI 10.1111/j.1365-2982.2006.00845.x.CrossRefGoogle ScholarPubMed
Guo, X, Li, J, Tang, R, et al. High fat diet alters gut microbiota and the expression of paneth cell-antimicrobial peptides preceding changes of circulating inflammatory cytokines. Mediat Inflamm. 2017; 2017, 19. DOI 10.1155/2017/9474896.Google ScholarPubMed
Popkin, BM, Adair, LS, Ng, SW. NOW AND THEN: The global nutrition transition: the pandemic of obesity in developing countries. Nutr Rev. 2012; 70(1), 321. DOI 10.1111/j.1753-4887.2011.00456.x.CrossRefGoogle ScholarPubMed
Popkin, BM. Nutrition transition and the global diabetes epidemic. Curr Diab Rep. 2015; 15(9), 114. DOI 10.1007/s11892-015-0631-4.CrossRefGoogle ScholarPubMed
Percie du Sert, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020; 18(7), e3000410. DOI 10.1371/journal.pbio.3000410.CrossRefGoogle ScholarPubMed
Estadella, D, Oyama, LM, Dâmaso, AR, Ribeiro, EB, Nascimento, CMO. Effect of palatable hyperlipidic diet on lipid metabolism of sedentary and exercised rats. Nutrition. 2004; 20, 218224.CrossRefGoogle ScholarPubMed
Oliveira, TWS, Leandro, CG, Deiró, TCBJ, et al. A perinatal palatable high-fat diet increases food intake and promotes hypercholesterolemia in adult rats. Lipids. 2011; 46(11), 10711074. DOI 10.1007/s11745-011-3604-7.CrossRefGoogle ScholarPubMed
Trevizan, AR, Vicentino-Vieira, SL, Watanabe, PS, et al. Kinetics of acute infection with Toxoplasma gondii and histopathological changes in the duodenum of rats. Exp Parasitol. 2016; 165, 2229. DOI 10.1016/j.exppara.2016.03.015.CrossRefGoogle ScholarPubMed
Vicentino-Vieira, SL, Gois, MB, Trevizan, AR, et al. Toxoplasma gondii infection causes structural changes in the jejunum of rats infected with different inoculum doses. Life Sci. 2017; 191, 141149. DOI 10.1016/j.lfs.2017.10.032.CrossRefGoogle ScholarPubMed
Pastre, MJ, Casagrande, L, Gois, MB, et al. Toxoplasma gondii causes increased ICAM-1 and serotonin expression in the jejunum of rats 12 h after infection. Biomed Pharmacother. 2019; 114(Suppl), 108797. DOI 10.1016/j.biopha.2019.108797.CrossRefGoogle ScholarPubMed
Boeing, T, Gois, MB, Souza, P, Somensi, LB, Sant'Ana, DMG, Silva, LM. Irinotecan-induced intestinal mucositis in mice: a histopathological study. Cancer Chemoth Pharm. 2020; 87, 327336.CrossRefGoogle ScholarPubMed
Santos, AGA, Ferlini, JP, Vicentino, SL, Lonardoni, MVC, Sant'Ana, DMG, Melo, GAN. Alterations induced in the ileum of mice upon inoculation with different species of Leishmania: a preliminary study. Rev Soc Bras Med Trop. 2018; 51(4), 537541. DOI 10.1590/0037-8682-0348-2017.CrossRefGoogle ScholarPubMed
Sant’Ana, DMG, Góis, MB, Zanoni, JN, Silva, AV, Silva, CJT, Araújo, EJA. Intraepithelial lymphocytes, goblet cells and VIP-IR submucosal neurons of jejunum rats infected with Toxoplasma gondii . Int J Exp Pathol. 2012; 93(4), 279286. DOI 10.1111/j.1365-2613.2012.00824.x.CrossRefGoogle ScholarPubMed
Taha, AS, Dahill, S, Nakshabendi, I, Lee, FD, Sturrock, RD, Russell, RI. Duodenal histology, ulceration, and Helicobacter pylori in the presence or absence of non-steroidal anti-inflammatory drugs. Gut. 1993; 34(9), 11621166. DOI 10.1136/gut.34.9.1162.CrossRefGoogle ScholarPubMed
Oberhuber, G, Granditsch, G, Vogelsang, H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol. 1999; 11(10), 11851194. DOI 10.1097/00042737-199910000-00019.CrossRefGoogle ScholarPubMed
Erben, U, Loddenkemper, C, Doerfel, K, et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol. 2014; 7, 45574576.Google ScholarPubMed
Santos, AGAD, Lima, LL, Mota, CA, et al. Insights of Leishmania (Viannia) braziliensis infection in golden hamster (Mesocricetus auratus) intestine. Biomed Pharmacother. 2018; 106(20), 16241632. DOI 10.1016/j.biopha.2018.07.120.CrossRefGoogle ScholarPubMed
Andrade, GF, Almeida, CG, Espeschit, ACR, et al. The addition of whole soy flour to cafeteria diet reduces metabolic risk markers in wistar rats. Lipids Health Dis. 2013; 12(1), 19. DOI 10.1186/1476-511X-12-145.CrossRefGoogle ScholarPubMed
Scoaris, CR, Rizo, GV, Roldi, LP, et al. Effects of cafeteria diet on the jejunum in sedentary and physically trained rats. Nutrition. 2010; 26(3), 312320. DOI 10.1016/j.nut.2009.04.012.CrossRefGoogle ScholarPubMed
Hariri, N, Thibault, L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010; 23(2), 270299. DOI 10.1017/S0954422410000168.CrossRefGoogle ScholarPubMed
Beaumont, M, Goodrich, JK, Jackson, MA, et al. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biol. 2016; 17(1), 119. DOI 10.1186/s13059-016-1052-7.CrossRefGoogle ScholarPubMed
Soares, A, Beraldi, EJ, Ferreira, PEB, Bazotte, RB, Buttow, NC. Intestinal and neuronal myenteric adaptations in the small intestine induced by a high-fat diet in mice. BMC Gastroenterol. 2015; 15(1), 19. DOI 10.1186/s12876-015-0228-z.CrossRefGoogle ScholarPubMed
Azevedo, JF, Hermes, C, Manzano, MA, Araújo, EJA, Sant’Ana, DMG. Morphometrics analysis of the intestinal wall of the ileum of rats submitted to intensive lack of protein. Arq Ciênc Vet Zool Unipar. 2007; 10, 8589.Google Scholar
Brandão, MCS, Angelis, RC, Souza, RR, Fróes, LB, Liberti, EA. Effects of pre and postnatal protein energy deprivation on the myenteric plexus of the small intestine: a morphometric study in weanling rats. Nutr Res. 2003; 75(2), 715. DOI 10.1016/S0271-5317(02)00459-1.Google Scholar
Araújo, EJA, Sant’Ana, DMG, Molinari, SL, Neto, MHM. Biometric and food consumption parameters of rats subjected to hypoproteic and hipercaloric diet. Arq Ciênc Vet Zool UNIPAR. 2005; 8, 131138.Google Scholar
Valdes, AM, Walter, J, Segal, E, Spector, TD. Role of the gut microbiota in nutrition and health. BMJ. 2018; 361, 3644. DOI 10.1136/bmj.k2179.Google ScholarPubMed
Moreira, APB, Texeira, TFS, Ferreira, AB, Peluzio, MCG, Alfenas, RCG. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Brit J Nutr. 2012; 108(5), 801809. DOI 10.1017/S0007114512001213.CrossRefGoogle ScholarPubMed
Shaw, D, Gohil, K, Basson, MD. Intestinal mucosal atrophy and adaptation. World J Gastroenterol. 2012; 18(44), 63576375. DOI 10.3748/wjg.v18.i44.6357.CrossRefGoogle ScholarPubMed
Oksaharju, A, Kooistra, T, Kleemann, R, et al. Effects of probiotic Lactobacillus rhamnosus GG and Propionibacterium freudenreichii ssp. shermanii JS supplementation on intestinal and systemic markers of inflammation in ApoE*3 Leiden mice consuming a high-fat diet. Brit J Nutr. 2013; 110(1), 7785. DOI 10.1017/S0007114512004801.CrossRefGoogle Scholar
Mujico, JR, Baccan, GC, Gheorghe, A, Díaz, LE, Marcos, A. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. Brit J Nutr. 2013; 110(4), 711720. DOI 10.1017/S0007114512005612.CrossRefGoogle ScholarPubMed
Beraldi, EJ, Soares, A, Borges, SC, et al. High-fat diet promotes neuronal loss in the myenteric plexus of the large intestine in mice. Dig Dis Sci. 2015; 60(4), 841849. DOI 10.1007/s10620-014-3402-1.CrossRefGoogle ScholarPubMed
Anitha, M, Reichardt, F, Tabatabavakili, S, et al. Intestinal dysbiosis contributes to the delayed gastrointestinal transit in high-fat diet fed mice. Cell Mol Gastroenterol Hepatol. 2016; 2(3), 328339. DOI 10.1016/j.jcmgh.2015.12.008.CrossRefGoogle Scholar
Furness, JB, Costa, M. The Enteric Nervous System, 2006. Churchill Livingstone, New York, pp. 128.Google Scholar
Clevers, HC, Bevins, CL. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol. 2013; 75(1), 289311. DOI 10.1146/annurev-physiol-030212-183744.CrossRefGoogle ScholarPubMed
Prendergast, AJ, Kelly, P. Interactions between intestinal pathogens, enteropathy and malnutrition in developing countries. Curr Opin Infect Dis. 2016; 29(3), 229236. DOI 10.1097/QCO.0000000000000261.CrossRefGoogle ScholarPubMed
Kim, YS, Ho, SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010; 12(5), 319330. DOI 10.1007/s11894-010-0131-2.CrossRefGoogle ScholarPubMed
Guibourdenche, M, Sabbouri, HEKE, Djekkoun, N, et al. Programming of intestinal homeostasis in male rat offspring after maternal exposure to chlorpyrifos and/or to a high fat diet. Sci Rep. 2021; 11(1), 11420. DOI 10.1038/s41598-021-90981-2.CrossRefGoogle ScholarPubMed
Toumi, F, Neunlist, M, Denis, MG, et al. Vasoactive intestinal peptide induces IL-8 production in human colonic epithelial cells via MAP kinase-dependent and PKA-independent pathways. Biochem Biophys Res Commun. 2004; 317(1), 187191. DOI 10.1016/j.bbrc.2004.03.033.CrossRefGoogle ScholarPubMed
Chen, B, Ni, X, Sun, R, et al. Commensal bacteria-dependent CD8αβ+ T cells in the intestinal epithelium produce antimicrobial peptides. Front Immunol. 2018; 9, 113. DOI 10.3389/fimmu.2018.01065.Google ScholarPubMed
Kaer, LV, Olivares-Villagómez, D. Development, homeostasis and functions of intestinal intraepithelial lymphocytes. J Immunol. 2018; 7(7), 22352244. DOI 10.4049/jimmunol.1701704.CrossRefGoogle Scholar
Franco, RE, Pérez, VV, Ramirez, EJ, González, AR, López, BS. Dieta rica em gordura induz alterações nos linfócitos intraepiteliais e mRNA de citocinas no intestino delgado de camundongos C57BL / 6. RSC Adv. 2017; 7, 53225330. DOI 10.1039/C6RA24689C .Google Scholar
de La Serre, CB, Ellis, CL, Lee, J, Hartman, AL, Rutledge, JC, Raybould, HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol: Gastrointest Liver Physiol. 2010; 299, G440G448. DOI 10.1152/ajpgi.00098.2010.Google ScholarPubMed
Liu, Z, Brooks, RS, Ciappio, ED, et al. Diet-induced obesity elevates colonic TNF-alpha in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal câncer. J Nutr Biochem. 2012; 23, 12071213. DOI 10.1016 / j.jnutbio.2011.07.002.CrossRefGoogle ScholarPubMed
Cani, PD, Neyrinck, AM, Fava, F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007; 50, 23742383. DOI 10.1007/s00125-007-0791-0.CrossRefGoogle ScholarPubMed
Tanaka, S, Nemoto, Y, Takei, Y, et al. High-fat diet-derived free fatty acids impair the intestinal immune system and increase sensitivity to intestinal epithelial damage. Biochem Biophys Res Commun. 2020; 522, 971977. DOI 10.1016/j.bbrc.2019.11.158.CrossRefGoogle ScholarPubMed