Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T02:54:03.856Z Has data issue: false hasContentIssue false

Simulating regional climate-adaptive field cropping with fuzzy logic management rules and genetic advance

Published online by Cambridge University Press:  29 May 2015

P. PARKER*
Affiliation:
Institute of Farm and Agribusiness Management, Justus-Liebig-University Gießen, 35390 Gießen, Germany Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
J. INGWERSEN
Affiliation:
Institute of Soil Science and Land Evaluation (310), University of Hohenheim, 70593 Stuttgart, Germany
P. HÖGY
Affiliation:
Institute of Landscape and Plant Ecology (320), University of Hohenheim, 70593 Stuttgart, Germany
E. PRIESACK
Affiliation:
Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Soil Ecology, 85764 Oberschleissheim, Germany
J. AURBACHER
Affiliation:
Institute of Farm and Agribusiness Management, Justus-Liebig-University Gießen, 35390 Gießen, Germany
*
*To whom all correspondence should be addressed. Email: phillip.parker@zalf.de

Summary

Agriculture is a largely technical endeavour involving complicated managerial decision-making that affects crop performance. Farm-level modelling integrates crop models with agent behaviour to account for farmer decision-making and complete the representation of agricultural systems. To replicate an important part of agriculture in Central Europe a crop model was calibrated for a unique region's predominant crops: winter wheat, winter and spring barley, silage maize and winter rapeseed. Their cultivation was then simulated over multiple decades at daily resolution to test validity and stability, while adding the dimension of agent behaviour in relation to environmental and economic conditions. After validation against regional statistics, simulated future weather scenarios were used to forecast crop management and performance under anticipated global change. Farm management and crop genetics were treated as adaptive variables in the milieu of shifting climatic conditions to allow projections of agriculture in the study region into the coming decades.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlemeyer, J. & Friedt, W. (2012). Winterweizenerträge in Deutschland stabil auf hohem Niveau – Welchen Einfluss hat der Züchtungsfortschritt. Getreidemagazin 17, 3841.Google Scholar
Ali, N., Javidfar, F., Elmira, J. Y. & Mirza, M. Y. (2003). Relationship among yield components and selection criteria for yield improvement in winter rapeseed (Brassica napus L.). Pakistan Journal of Botany 35, 167174.Google Scholar
Angulo, C., Rötter, R., Lock, R., Enders, A., Fronzek, S. & Ewert, F. (2013). Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology 170, 3246.CrossRefGoogle Scholar
Aurbacher, J. & Dabbert, S. (2011). Generating crop sequences in land-use models using maximum entropy and Markov chains. Agricultural Systems 104, 470479.CrossRefGoogle Scholar
Aurbacher, J., Parker, P. S., Calberto Sánchez, G. A., Steinbach, J., Reinmuth, E., Ingwersen, J. & Dabbert, S. (2013). Influence of climate change on short term management of field crops – A modelling approach. Agricultural Systems 119, 4457.CrossRefGoogle Scholar
Bassu, S., Brisson, N., Durand, J.-L., Boote, K., Lizaso, J., Jones, J. W., Rosenzweig, C., Ruane, A. C., Adam, M., Baron, C., Basso, B., Biernath, C., Boogaard, H., Conijn, S., Corbeels, M., Deryng, D., De Sanctis, G., Gayler, S., Grassini, P., Hatfield, J., Hoek, S., Izaurralde, C., Jongschaap, R., Kemanian, A. R., Kersebaum, K. C., Kim, S.-H., Kumar, N. S., Makowski, D., Müller, C., Nendel, C., Priesack, E., Pravia, M. V., Sau, F., Shcherbak, I., Tao, F., Teixeira, E., Timlin, D. & Waha, K. (2014). How do various maize crop models vary in their responses to climate change factors? Global Change Biology 20, 23012320.CrossRefGoogle ScholarPubMed
BBCH (Biologische Bundesanstallt für Land-und Forstwirtschaft) (1997). Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph. Berlin: Blackwell Wissenschafts-Verlag.Google Scholar
Bizikova, L., Crawford, E., Nijnik, M. & Swart, R. (2014). Climate change adaptation planning in agriculture: processes, experiences and lessons learned from early adapters. Mitigation and Adaptation Strategies for Global Change 19, 411430.CrossRefGoogle Scholar
Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. (2011). Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles 25, GB2006. doi: 10.1029/2009GB003765.CrossRefGoogle Scholar
DESTATIS (2014). Area Under Cultivation, Field Crops and Pasture. Wiesbaden, Germany: Statistisches Bundesamt. Available from: https://www-genesis.destatis.de/genesis/online (verified 3 May 2014).Google Scholar
DWD (2012 a). Weather and Climate – Deutsche Wetterdienst – Agroclimatology, 2012. Offenbach, Germany: German Weather Service. Available online from: http://www.dwd.de/ (verified 6 May 2012).Google Scholar
DWD (2012 b). Weather and Climate – Deutsche Wetterdienst – Phenology, 2012. Offenbach, Germany: German Weather Service. Available from: http://www.dwd.de/bvbw/appmanager/bvbw/dwdwwwDesktop (verified 6 May 2012).Google Scholar
Estrella, N., Sparks, T. H. & Menzel, A. (2007). Trends and temperature response in the phenology of crops in Germany. Global Change Biology 13, 17371747.CrossRefGoogle Scholar
Ewald, J. (2013). Carbon Dioxide at NOAA's Mauna Loa Observatory reaches new milestone: Tops 400 ppm. NOAA Research Press Release, 10 May 2013. Available from: http://www.esrl.noaa.gov/news/2013/CO2400.html (verified March 2015).Google Scholar
Ewert, F., Rounsevell, M. D. A., Reginster, I., Metzger, M. J. & Leemans, R. (2005). Future scenarios of European agricultural land use: I. Estimating changes in crop productivity. Agriculture, Ecosystems and Environment 107, 101116.CrossRefGoogle Scholar
Eurostat (2013). Farm Land Use. Luxembourg: EuroStat (European Commission Statistical Databases). Available from: http://ec.europa.eu/eurostat/web/agriculture/farm-structure (verified April 2015).Google Scholar
Friedt, W. & Ordon, F. (2013). Barley production and breeding in Europe: modern cultivars combine disease resistance, malting quality and high yield. In Advance in Barley Sciences: Proceedings of 11th International Barley Genetics Symposium (Eds Zhang, G., Li, C. & Liu, X.), pp. 389–400. Dordrecht, Netherlands: Springer.CrossRefGoogle Scholar
Gayler, S., Ingwersen, J., Priesack, E., Wöhling, T., Wulfmeyer, V. & Streck, T. (2013). Assessing the relevance of subsurface processes for the simulation of evapotranspiration and soil moisture dynamics with CLM3. 5: comparison with field data and crop model simulations. Environmental Earth Sciences 69, 415427.CrossRefGoogle Scholar
Högy, P. & Fangmeier, A. (2013). Yield and yield quality of major cereals under climate change. In Wake Up Before it is Too Late – Make Agriculture Truly Sustainable Now for Food Security in a Changing Climate (Ed. Hoffman, U.), pp. 4649. UNCTAD Trade and Environment Review 2013. Geneva, Switzerland: United Nations Publication.Google Scholar
Högy, P., Zörb, C., Langenkämper, G., Betsche, T. & Fangmeier, A. (2009). Atmospheric CO2 enrichment changes the wheat grain proteome. Journal of Cereal Science 50, 248254.CrossRefGoogle Scholar
Ingwersen, J., Steffens, K., Högy, P., Warrach-Sagi, K., Zhunusbayeva, D., Poltoradnev, M., Gäbler, R., Wizemann, H.-D., Fangmeier, A., Wulfmeyer, V. & Streck, T. (2011). Comparison of Noah simulations with eddy covariance and soil water measurements at a winter wheat stand. Agricultural and Forest Meteorology 151, 345355.CrossRefGoogle Scholar
IPCC Core Writing Team, Pachauri, R. K. & Reisinger, A. (2007). Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.Google Scholar
Jeuffroy, M.-H., Casadebaig, P., Debaeke, P., Loyce, C. & Meynard, J.-M. (2014). Agronomic model uses to predict cultivar performance in various environments and cropping systems. A review. Agronomy for Sustainable Development 34, 121137.CrossRefGoogle Scholar
Jones, C. A. & Kiniry, J. R. (1986). CERES-Maize. A Simulation Model of Maize Growth and Development. College Station, Texas: Texas A&M University Press.Google Scholar
Kreienkamp, F., Enke, W. & Spekat, A. (2010). WR2010_EH5_1_A1B: UBA-WETTREG ECHAM5/OM 20C+ A1B. Lauf 1 Realization Run 1961–2100. World Data Center for Climate. CERA-DB “WR2010_EH5_1_A1B”. Available from: http://cera-www.dkrz.de/WDCC/ui/Entry.jsp?acronym=WR2010_EH5_1_A1B (verified April 2015).Google Scholar
Leclère, D., Jayet, P.-A. & de Noblet-Ducoudré, N. (2013). Farm-level autonomous adaptation of European agricultural supply to climate change. Ecological Economics 87, 114.CrossRefGoogle Scholar
Leenhardt, D. & Lemaire, P. (2002). Estimating the spatial and temporal distribution of sowing dates for regional water management. Agricultural Water Management 55, 3752.CrossRefGoogle Scholar
LGRB (1997). Bodenkarte von Baden-Württemberg 1:25 000. Freiburg im Breisgau, Germany: Landesamt für Geologie, Rohstoffe und Bergbau.Google Scholar
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science 333, 616620.CrossRefGoogle ScholarPubMed
LTZ Augustenberg (Ed.), (2013). Informationen für die Pflanzenproduktion. Karlsruhe, Germany: Landwirtschaftliches Technologiezentrum Augustenberg. Available from: http://www.ltz-bw.de/pb/,Lde/Startseite/Service/Informationen+fuer+die+Pflanzenproduktion?QUERYSTRING=Informationen+f%C3%BCr+die+Pflanzenproduktion (verified 2 February 2013).Google Scholar
Marjanović-Jeromela, A., Marinković, R., Ivanovska, S., Jankulovska, M., Mijić, A. & Hristov, N. (2011). Variability of yield determining components in winter rapeseed (Brassica napus L.) and their correlation with seed yield. Genetika 43, 5166.CrossRefGoogle Scholar
Mast, B., Claupein, W. & Graeff-Hönninger, S. (2014). Using a crop growth model to quantify regional biogas potentials: an example of the model region Biberach (South-West Germany). BioEnergy Research 7, 10141025.CrossRefGoogle Scholar
Matthews, R. B., Rivington, M., Muhammed, S., Newton, A. C. & Hallett, P. D. (2013). Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling. Global Food Security 2, 2428.CrossRefGoogle Scholar
Menzel, A. (2013). Plant phenological ‘fingerprints’. In Phenology: An Integrative Environmental Science (Ed. Schwartz, M. D.), pp. 335350. Tasks for Vegetation Science vol. 39. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Nash, J. E. & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology 10, 282290.CrossRefGoogle Scholar
Olesen, J. E., Børgesen, C. D., Elsgaard, L., Palosuo, T., Rötter, R., Skjelvåg, A., Peltonen-Sainio, P., Börjesson, T., Trnka, M., Ewert, F., Siebert, S., Brisson, N., Eitzinger, J., van der Fels-Klerx, H. J. & van Asselt, E. (2012). Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Additives and Contaminants: Part A 29, 15271542.CrossRefGoogle ScholarPubMed
Palosuo, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J. E., Patil, R. H., Ruget, F., Rumbaur, C., Takáč, J., Trnka, M., Bindi, M., Çaldağ, B., Ewert, F., Ferrise, R., Mirschel, W., Şaylan, L., Šiška, B. & Rötter, R. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy 35, 103114.CrossRefGoogle Scholar
Poeter, E. P., Hill, M. C., Banta, E. R., Mehl, S. & Christensen, S. (2005). Ucode_2005 and Six Other Computer Codes for Universal Sensitivity Analysis, Calibration, and Uncertainty Evaluation. US Geological Survey Techniques and Methods 6-A11. Reston, Virginia: US Geological Survey.Google Scholar
Priesack, E. (2006). Expert-N-Dokumentation der Modellbibliothek. Munich: Hieronymus.Google Scholar
Rötter, R. P., Palosuo, T., Kersebaum, K. C., Angulo, C., Bindi, M., Ewert, F., Ferrise, R., Hlavinka, P., Moriondo, M., Nendel, C., Olesen, J. E., Patil, R. H., Ruget, F., Takáč, J. & Trnka, M. (2012). Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Research 133, 2336.CrossRefGoogle Scholar
Rotz, C. A. & Harrigan, T. M. (2005). Predicting suitable days for field machinery operations in a whole farm simulation. Applied Engineering in Agriculture 21, 563571.CrossRefGoogle Scholar
Sacks, W. J. & Kucharik, C. J. (2011). Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agricultural and Forest Meteorology 151, 882894.CrossRefGoogle Scholar
Schöneburg, E., Heinzmann, F. & Feddersen, S. (1994). Genetische Algorithmen und Evolutionsstrategien. Bonn: Addison-Wesley.Google Scholar
Van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P. & Hochman, Z. (2013). Yield gap analysis with local to global relevance – A review. Field Crops Research 143, 417.CrossRefGoogle Scholar
Waha, K., van Bussel, L. G. J., Müller, C. & Bondeau, A. (2012). Climate-driven simulation of global crop sowing dates. Global Ecology and Biogeography 21, 247259.CrossRefGoogle Scholar
Waha, K., Müller, C., Bondeau, A., Dietrich, J., Kurukulasuriya, P., Heinke, J. & Lotze-Campen, H. (2013). Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environmental Change 23, 130143.CrossRefGoogle Scholar
Wieland, R., Mirschel, W., Nendel, C. & Specka, X. (2013). Dynamic fuzzy models in agroecosystem modelling. Environmental Modelling and Software 46, 4449.CrossRefGoogle Scholar
Yin, X. & Van Laar, H. (2005). Crop Systems Dynamics: an Ecophysiological Simulation Model for Genotype-by-Environment Interactions. Wageningen, The Netherlands: Wageningen Academic Pub.Google Scholar