Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T02:12:27.587Z Has data issue: false hasContentIssue false

Combined effects of Aspergillus oryzae fermentation extract and monensin on fermentation in the rumen simulation technique (Rusitec)

Published online by Cambridge University Press:  27 March 2009

C. J. Newbold
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB, UK
N. McKain
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB, UK
R. J. Wallace
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB, UK

Summary

Monensin, an ionophore, and Aspergillus oryzae fermentation extract (AO), a fungal feed additive, are growth promoters which modify rumen fermentation. The effects of combining these additives were determined in the rumen simulation technique (Rusitec). Sixteen vessels received 20 g/day of a diet of hay, barley, molasses, fishmeal and a mineral/vitamin mixture (500, 299·5, 100, 91 and 9·5 g/kg DM respectively). AO, monensin (M) and AO + monensin (AO/M) were each added to four vessels at 500, 10 and (500 + 10) mg/day respectively. Both M and AO/M increased propionate (14·5 and 138 v. 91 mmol/day in controls; P < 0·001) and reduced butyrate production (6·6, 5·2 and 9·1 mmol/day respectively; P < 0·01), whereas AO had no effect. AO increased bacterial numbers by 70% (P < 0·055), while M had no effect, and in the presence of M, AO also had no effect. Proteolytic activity in samples from the vessels decreased (P < 0·05) in all treatments (1·06, 0·71, 0·60 and 0·47 mg 14C-casein/mg protein/h for control, AO, M and AO/M respectively). In contrast, deamination of amino acids increased (P < 0·001) with AO and AO/M but decreased slightly with M alone (482, 646, 434 and 644 nmol NH3/mg protein/h). Ammonia output was unchanged (47·4, 57·2, 42·7 and 44·8 mg/day). Thus each additive was dominant over the other for different activities, with monensin generally suppressing the effects of AO rather than vice-versa.

Type
Animals
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arambel, M. J., Wiedmeier, R. D. & Walters, J. L. (1987). Influence of donor animal adaptation to added yeast culture and/or Aspergillus oryzae fermentation extract on in vitro rumen fermentation. Nutrition Reports International 35, 433436.Google Scholar
Beharka, A. A. & Nagaraja, T. G. (1991). Effects of Aspergillus oryzae extract (Amaferm) on ruminal fibrolytic bacteria and in vitro fibre degradation. Biennial Conference on Rumen Function, Chicago, Illinois 21, 32 (Abstract).Google Scholar
Broderick, G. A., Wallace, R. J. & Ørskov, E. R. (1991). Control of rate and extent of protein degradation. In Physiological Aspects of Digestion and Metabolism in Ruminants (Eds Tsuda, T., Sasaki, Y. & Kawashima, R.), pp. 541592. London: Academic Press.CrossRefGoogle Scholar
Campos-Montiel, R., Tapia-Infantes, M., Herrerasaldana, R. & Viniegra-Gonzalez, G. (1991). Is the fungal probiotic effect on ruminants related to enzyme activity? Journal of Dairy Science 74 (Supplement 1), 177 (Abstract).Google Scholar
Chen, G. & Russell, J. B. (1988). Fermentation of peptides and amino acids by a monensin-sensitive ruminal peptostreptococcus. Applied and Environmental Microbiology 54, 27422749.CrossRefGoogle ScholarPubMed
Chen, M. & Wolin, M. J. (1979). Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Applied and Environmental Microbiology 38, 7277.CrossRefGoogle ScholarPubMed
Czerkawski, J. W. & Breckenridge, G. (1977). Design and development of a long-term rumen simulation technique (Rusitec). British Journal of Nutrition 38, 371384.CrossRefGoogle ScholarPubMed
Dennis, S. M., Nagaraja, T. G. & Bartley, E. E. (1981). Effects of lasalocid or monensin on lactate-producing or -using rumen bacteria. Journal of Animal Science 52, 418426.CrossRefGoogle ScholarPubMed
Fondevila, M., Newbold, C. J., Hotten, P. M. & Ørskov, E. R. (1990). A note on the effect of Aspergillus oryzae fermentation extract on the rumen fermentation of sheep given straw. Animal Production 51, 422425.Google Scholar
Frumholtz, P. P., Newbold, C. J. & Wallace, R. J. (1989). Influence of Aspergillus oryzae fermentation extract on the fermentation of a basal ration in the rumen simulation technique (Rusitec). Journal of Agricultural Science, Cambridge 113, 169172.CrossRefGoogle Scholar
Genstat 5 Committee (1987). Genstat 5 Users Manual. Oxford: Oxford University Press.Google Scholar
Gomez-Alarcon, R. A., Dudas, C. & Huber, J. T. (1990). Influence of cultures of Aspergillus oryzae on rumen and total tract digestibility of dietary components. Journal of Dairy Science 73, 703710.CrossRefGoogle ScholarPubMed
Goodall, S. R. & Byers, F. M. (1978). Automated micro method for enzymatic L(+) and D(-) lactic acid determinations in biological fluids containing cellular extracts. Analytical Biochemistry 89, 8086.CrossRefGoogle Scholar
Goodrich, R. D., Garrett, J. E., Gast, D. R., Kirick, M. A., Larson, D. A. & Meiske, J. C. (1984). Influence of monensin on the performance of cattle. Journal of Animal Science 58, 14841498.CrossRefGoogle ScholarPubMed
Herbert, D., Phipps, P. J. & Strange, R. E. (1971). Chemical analysis of microbial cells. Methods in Microbiology 5B, 249252.Google Scholar
Kellems, R. O., Lagerstedt, A. & Wallentine, M. V. (1990). Effect of feeding Aspergillus oryzae fermentation extract or Aspergillus oryzae plus yeast culture plus mineral and vitamin supplement on performance of Holstein cows during a complete lactation. Journal of Dairy Science 73, 29222928.CrossRefGoogle ScholarPubMed
McDougall, E. I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochemical Journal 43, 99109.CrossRefGoogle ScholarPubMed
Newbold, C. J., Wallace, R. J., Watt, N. D. & Richardson, A. J. (1988). Effect of the novel ionophore tetronasin (ICI 139603) on ruminal microorganisms. Applied and Environmental Microbiology 54, 544547.CrossRefGoogle ScholarPubMed
Newbold, C. J., Brock, R. & Wallace, R. J. (1991). Influence of autoclaved or irradiated Aspergillus oryzae fermentation extract on fermentation in the rumen simulation technique (Rusitec). Journal of Agricultural Science, Cambridge 116, 159162.CrossRefGoogle Scholar
Newbold, C. J., Wallace, R. J. & Watt, N. D. (1992 a). Properties of ionophore-resistant Bacteroides ruminicola enriched by cultivation in the presence of tetronasin. Journal of Applied Bacteriology 72, 6570.CrossRefGoogle ScholarPubMed
Newbold, C. J., Frumholtz, P. P. & Wallace, R. J. (1992 b). Influence of Aspergillus oryzae fermentation extract on rumen fermentation and blood constituents in sheep given diets of grass hay and barley. Journal of Agricultural Science, Cambridge 119, 423427.CrossRefGoogle Scholar
Oellermann, S. O., Arambel, M. J., Kent, B. A. & Walters, J. L. (1990). Effect of graded amounts of Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility in cattle. Journal of Dairy Science 73, 24132416.CrossRefGoogle Scholar
Russell, J. B. & Strobel, H. J. (1989). Effect of ionophores on ruminal fermentation. Applied and Environment Microbiology 55, 16.CrossRefGoogle ScholarPubMed
Russell, J. B., Strobel, H. J. & Chen, G. (1988). Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Applied and Environmental Microbiology 54, 872877.CrossRefGoogle ScholarPubMed
Schelling, G. T. (1984). Monensin mode of action in the rumen. Journal of Animal Science 58, 15181527.CrossRefGoogle ScholarPubMed
Stewart, C. S. & Duncan, S. H. (1985). The effect of avoparcin on cellulolytic bacteria of the ovine rumen. Journal of General Microbiology 131, 427435.Google Scholar
Van Nevel, C. J. & Demeyer, D.I. (1977). Effect of monensin on rumen metabolism in vitro. Applied and Environmental Microbiology 34, 251257.CrossRefGoogle ScholarPubMed
Wallace, R. J. (1983). Hydrolysis of 14C-labelled proteins by rumen micro-organisms and by proteolytic enzymes prepared from rumen bacteria. British Journal of Nutrition 50, 345355.CrossRefGoogle ScholarPubMed
Wallace, R. J. & McKain, N. (1989). Analysis of peptide metabolism by ruminal microorganisms. Applied and Environmental Microbiology 55, 23722376.CrossRefGoogle ScholarPubMed
Wallace, R. J., Czerkawski, J. W. & Breckenridge, G. (1981). Effect of monensin on the fermentation of basal rations in the Rumen Simulation Technique (Rusitec). British Journal of Nutrition 46, 131148.CrossRefGoogle ScholarPubMed
Wallace, R. J., Broderick, G. A. & Brammall, M. L. (1987). Microbial protein and peptide metabolism in rumen fluid from faunated and ciliate-free sheep. British Journal of Nutrition 58, 8793.CrossRefGoogle ScholarPubMed
Wiedmeier, R. D., Arambel, M. J. & Walters, J. L. (1987). Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility. Journal of Dairy Science 70, 20632068.CrossRefGoogle ScholarPubMed
Whitehead, R., Cooke, G. H. & Chapman, B. T. (1967). Problems associated with the continuous monitoring of ammoniacal nitrogen in river water. Automation in Analytical Chemistry 2, 377380.Google Scholar
Williams, P. E. V. & Newbold, C. J. (1990). Rumen probiosis: the effects of novel microorganisms on rumen fermentation and ruminant productivity. In Recent Advances in Animal Nutrition 1990 (Eds Haresign, W. & Cole, D. J. A.), pp. 211227. London: Butterworths.CrossRefGoogle Scholar