Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T16:51:35.227Z Has data issue: false hasContentIssue false

Salivary glands of the tsetse Glossina pallidipes Austen infected with Trypanosoma brucei and virus particles: Ultrastructural study

Published online by Cambridge University Press:  19 September 2011

E. D. Kokwaro
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
L. H. Otieno
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
M. Chimtawi
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

The effects of infection by Trypanosoma brucei and DNA virus on the ultrastructure of the salivary gland cells in Glossina pallidipes Austen were investigated. Cytoplasm of uninfected cells contains a dense ribosomal population and rough endopiasmic reticulum, scattered Golgi areas and mitochondria. In infected ceils of salivary glands the ultrastructural integrity of the cytoplasm is profoundly changed due to cellular proliferation giving rise to a stratified epithelium and gland enlargement; cell degeneration characterized by formation of cytoplasmic vacuoles, chromatin margination, disorganization and elimination of cell organelles and gland hypertrophy. The virus particles are found in the nucleoplasm as well as the cytoplasm of cells. The ultrastructural evidence indicates that the virus are largely assembled in nuclei of cells and virions pass through the nuclear membrane. The trypanosomes are found within the degenerating cytoplasm and lumen of the cell.

The implications of the features observed in the infected cells are discussed, and possible suggestions are made regarding alteration of the metabolic functions due to infection.

Résumé

Les effets de l'infection due aux Trypanosoma brucei et au DNA-virus sur l'ultrastructure des cellules de glandes salivaires des Glossina pallidipes Austen furent analysée. Le cytoplasme des cellules non-infecté contient une population dense de ribosomes et un reticulum endoplasmique rugeux, des surfaces de Golgl et de mitochondries eparpilles. Chez les cellules infectées l'integral de l'ultrastructure du cytoplasme est profondement changée grâce à une prolifération celluiaire donnant naissance à un epithelium stratifié et à une hypertrophie de la glande; dégéneration cellulaire characterisée par la formation des vacoules cytoplasmiques, marginalisation de la chromatine, désorganisation et élimination de la substance celluiaire et hypertrophie de la glande. Les particules virales se trouvaient dans le nucleoplasme ainsi que dans le cytoplasme des cellules. L'évidence ultrastructurale indique que les virus sont asemblées dans le noyeau celluiaire et que le virion passe à travers la membrane nucleaire. Les trypanosomes ont été trouvé dans le cytoplasme en dégéneration.

Les implications de ces observations dans les cellules infectées ont été discuté et des suggestions ont été faites en ce que regarde l'alterations des fonction metaboliques due à l'infection.

Type
Part II: Symposium on Insect Pests and Sustainable Food Production: Insect Physiology
Copyright
Copyright © ICIPE 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berridge, M. J., Gupta, B. L., Oschman, J. L. and Wall, B. H. (1976) Salivary gland development in the blowfly, Calliphora erythrocephala. J. Morph. 149, 459582.CrossRefGoogle ScholarPubMed
Burtt, E. (1942) Observations on the high proportion of polymorphic trypanosome infections found in the salivary glands of G. brevipalpis near Amani, Tanganyika Territory, with a note on the appearance of the infected glands. Ann. Trop. Med. 36, 170176.Google Scholar
Burtt, E. (1945) Hypertrophied salivary glands in Glossina. Evidence that G. pallidipes with this abnormality is peculiarly suited to trypanosome infection. Ann. Trop. Med. Parasitol. 39, 1113.CrossRefGoogle Scholar
Burtt, E. (1950) An illustration of the appearance presented by trypanosome colonies occurring on the proboscis and in the salivary glands of a tsetse fly. Acta Trop. 7, 6162.Google Scholar
Chamberlain, R. W. (1968) Arboviruses, the arthropod-borne animal viruses. Curr. Topics Microbiol. Immunol. 42, 3858.Google Scholar
Fawcett, D. W. and Witebsky, F. (1964) Observations on the ultrastructure of the nucleated erythrocytes and thrombocytes, with particular reference to the structural basis of their discoid shape. Z. Zellforsch. mikrosk. Anat. 62, 785806.CrossRefGoogle Scholar
Golder, T. K. and Patel, N. Y. (1984) Some effects of trypanosome development on the saliva and salivary glands of the tsetse fly, Glossina morsitans. Euro. J. Cell. Biol. 22, 551.Google Scholar
Jaenson, T. G. T. (1978) Virus-like rods associated with salivary gland hyperplasia in tsetse, Glossina pallidipes. Trans. R. Soc. Trop. Med. Hyg. 72, 234238.Google Scholar
Janzen, H. G. A., Rhodes, A. J. and Doane, F. W. (1970) Chikungunya virus in salivary glands of Aedes aegypti (L): an electron microscope study. Can. J. Microbiol. 16, 581586.CrossRefGoogle ScholarPubMed
Jenni, L. (1973) Virus-like particles in a strain of G. morsitans centralis Machado 1970. Trans. R. Soc. Trop. Med. Hyg. 67, 295.CrossRefGoogle Scholar
Jenni, L. and Steiger, R. (1974) Virus-like particles of Glossina fuscipes Newst. 1910. Acta Trop. 31, 177180.Google Scholar
Jurand, A., Simoes, L. C. G. and Pavan, C. (1967) Changes in the ultrastructure of salivary gland cytoplasm in Sciara ocellaris (Comstock, 1882) due to microsporidian infection. J. Insect Physiol. 13, 795803.Google Scholar
Klei, T. R. and De Giusti, L. D. (1973) Ultrastructural changes in salivary glands of Pseudolynchia canariensis (Diptera: Hippoboscidae) infected with Sporozoites of Haemoproteus columbae. J. Invert. Pathol. 22, 321328.Google Scholar
Larsen, J. R. and Ashley, R. F. (1971) Demonstration of Venezuelan equine encephalomyelitis virus in tissue of Aedes aegypti. Amer. J. Trop. Med. Hyg. 20, 754760.CrossRefGoogle ScholarPubMed
Livesey, J. L., Molyneux, D. H. and Jenni, L. (1980) Mechanoreceptor-trypanosome infection in the labrum of Glossina: fluid mechanics. Acta Trop. 31, 151161.Google Scholar
Mims, C. A., Day, M. F. M. and Marsha, L. I. D. (1966) Cytopathic effect of Semliki forest virus in the mosquito Aedes aegypti. Am. J. Trop. Med. Hyg. 15, 775784.CrossRefGoogle ScholarPubMed
Otieno, L. H., Kokwaro, E. D., Chimtawi, M. and Onyango, P. (1980) Prevalence of enlarged salivary glands in wild populations of Glossina pallidipes in Kenya, with a note on the ultrastructure of the affected organ. J. Invert. Path. 36, 113118.Google Scholar
Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208212.CrossRefGoogle ScholarPubMed
Sequeira, L. M. (1971) Structure and functional relations of the salivary glands of the tsetse-fly. M.Sc. thesis. University of Nairobi.Google Scholar
Steinhaus, A. S. and Zeikus, R. D. (1969) Teratology of the beetle Tenebrio molitor. IV Ultrastructure of the necrotic fat body foregut associated with the pupal-winged adult. J. Invert. Path. 13, 337344.Google Scholar
Whitfield, S. G., Murthy, F. A. and Sudia, W. D. (1971) Eastern equine encephalomyelitis virus: an electron microscopic study of Aedes triseriatus (Say) salivary gland infection. Virology 43, 110122.Google Scholar
Whitnall, A. B. M. (1934) The trypanosome infections of Glossina pallidipes in the Umfolosi Game Reserve, Zululand. Onderstepoort J. Vet. Anim. Ind. 11, 721.Google Scholar
Wigglesworth, V. B. (1965) The Principles of Insect Physiology 6th ed.Dutton, New York.Google Scholar