Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T17:47:49.318Z Has data issue: false hasContentIssue false

Muscardine fungi for the biological control of agroforestry termite Odontotermes obesus (Rambur)

Published online by Cambridge University Press:  19 September 2011

H. Khader Khan
Affiliation:
Department of Entomology, Tamil Nadu Agricultural University, Coimbatore-641 003, India
S. Jayaraj
Affiliation:
Department of Entomology, Tamil Nadu Agricultural University, Coimbatore-641 003, India
M. Gopalan
Affiliation:
Department of Entomology, Tamil Nadu Agricultural University, Coimbatore-641 003, India
Get access

Abstract

Among the eight entomopathogenic fungi tested against the termite, Odontotermes obesus (Rambur), five fungal pathogens viz., Beauveria bassiana (Bals.) Yuil, Metarhizium anisopliae (Metsch.) Sorokin var. anisopliae, M. flavoviride Gams Rozsypal var. minus, Paecilomyces lilacinus (Thom) Samson and P. fumosoroseus (Wize) Brown & Smith, were pathogenic. Three other fungal pathogens viz. Verticillium lecanii Zimm, Paecilomyces farinosus (Holm, ex Gray) and Nomuraea rileyi (Farlow) were not pathogenic. B. bassiana was the most effective pathogen against termites, followed by M. anisopliae, M. flavoviride, P. lilacinus and P. fumosoroseus. Workers minor, of the three morphogenetic forms of O. obesus, were the most susceptible, followed by workers major and soldier caste. Bioassay on isolates of two most virulent termite pathogens, B. bassiana and M. anisopliae revealed that B. bassiana isolate Bapatla was the most effective fungal pathogen with the lowest LC50 (9.98 × 104 conidia/ml)

Résumé

Huit champignons entomopathogènes ont été testes contre les termites Odontotermes obesus (Rambur). Cinq espèces se sont révélées efficaces: Beauveria bassiana (Bals.) Vuill., Metarhizium anisopliae (Metsch.) Sorokin var. anisopliae, M. flavoviride Gams Rozsypal var. minus, Paecilomyces lilacinus (Thom.) Samson et P. fumosoroseus (Wize) Brown et Smith. B. bassiana a été le plus efficace suivi par M. anisopliae, M. flavoviride, P. lilacinus et P. fumosoroseus. Sur les trois morphotypes de O. obesus testés, les petits ouvriers ont été les plus effectés, suivis par les grands ouvriers puis les soldats. Les trois autres champignons pathogènes, Verticillium lecanii Zimm., Paecilomyces farinosus (Holm, ex Gray) et Nomureae rileyi (Farlow) n'ont pas donné de résultat positif. Les essais biologiques sul les isolats obtenus sur les deux entomopathogènes les plus virulents, B. bassiana et M. anisopliae, ont montre que l'isolat B. bassiana Bapatla a été le pathogène le plus efficace avec les valeurs LC50 (9.98 × 104 conidia/ml) et LT50 (83, 66hr) les plus faibles.

Type
Research Articles
Copyright
Copyright © ICIPE 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbot, W. S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265267.CrossRefGoogle Scholar
Agarwal, V. B. (1975) Studies on the biology and ecology of mound building termites, Odontotermes microdentatus Roanwal and Sen- Sarma and Odontotermes obesus (Rambur) Insecta: Termitidae. Ph.D. Thesis, University of Meerut.Google Scholar
Agarwal, V. B. (1978) Seasonal fluctuations of different castes as found in the fungus combs of Odontotermes obesus (Rambur) and Odontotermes microdentatus Roonwal and Sen-Sarma. In Soil Biology and Ecology in India. Edited by Edwards, C. A. and Veeresh, G. K., UAS. Tech Ser. 22, 192196.Google Scholar
Ausat, A., Cheema, P. S., Koshi, T., Petri, S. L. and Ranganathan, S. K. (1962) Laboratory culturing of termites. In Termites in the Humid Tropics. Proc. New Delhi Symp. 1960, 121–125 UNESCO, Paris.Google Scholar
Boman, H. G. (1981) Insect responses to microbial infections. In Microbial Control of Pests and Plant Diseases 1970–1980 (Edited by Burges, H. D.) pp. 769784, Academic Press, London, New York.Google Scholar
Fargues, J. (1976) Specificite des champignons pathogenes imparfaits (Hyphomycetes) pour des larves de coleopteres (Scarabaeidae et chrysomelidae). Entomophaga 21, 313323.CrossRefGoogle Scholar
Fargues, J. (1981) Specificite des Hyphomycetes entomopathogenes et resistance interspecifique des larves d'insectes. I. These Doctorat des Sciences naturelles, Universites Paris VI.Google Scholar
Fargues, J. and Remaudiere, G. (1977) Considerations on the specificity of entomopathogenic fungi. Mycopathologia 62, 3137.CrossRefGoogle Scholar
Fargues, J., Robert, P. H. and Vey, A. (1976) Role du tegument et de la defense cellulaire des Coleopteres hotes dans la specificite des souches entomopathogenes de Metarhizium anisopliae. C. R. Sci. Acad. Sci. Serie D. 282, 22232226.Google Scholar
Fargues, J. and Rodriguez-Rueda, D. (1980) Susceptibility of the larvae of Spodoptera littoralis (Lep: Noctuidae) to the entomopathogenic hyphomycetes Nomuraea rileyi and Paecilomyces fumosoroseus. Entomophaga 25, 4345.CrossRefGoogle Scholar
Ferron, P. (1978) Etiologie et epidemiologie des muscardine. These, Univ. P. and M. Curie, Paris, France.Google Scholar
Ferron, P., Hurpin, B. and Robert, P. H. (1972) Sur la specificite de Metarhizium anisopliae (Metsch.) Sorokin. Entomophaga 17, 165178.CrossRefGoogle Scholar
Finney, D. J. (1964) Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. Second edition. Cambridge University Press, London.Google Scholar
Gardner, W. A. and Noblet, R. (1978) Effects of host age, route of infection and quantity of inoculum on the susceptibility of Heliothis virescens, Spodoptera eridanis and S. frugiperda to B. bassiana. J. Georgia Entomol. Soc. 13, 214222.Google Scholar
Getzin, L. W. (1961) Spicaria rileyi (Farlow) Charles. An entomogenous fungus of Trichoplusia ni (Hubner). J. Insect Pathol. 3, 210.Google Scholar
Gillespie, A. T. (1986) Effect of entomogenous fungi on the brown plant hopper of rice Nilaparvata lugens. In Biotechnology and Crop Improvement and Protection Monograph No. 34 (Edited by Day Peter, R.). Proc. Symp. British Crop Protection Council, Cambridge, 264 p.Google Scholar
Hall, R. A. and Papierok, B. (1982) Fungi as biological control agents of arthropods of agricultural and medical importance. Parasitology 84, 205240.CrossRefGoogle Scholar
Hanel, H. (1981) A bioassay for measuring the virulence of the insect pathogenic fungus Metarhhium anisopliae (Metsch.) Soroki n again st the termite Nasutitermes exitiosus (Hill) (Isoptera:Termitidae). Z. Angew. Entomol. 92, 918.CrossRefGoogle Scholar
Hanel, H. (1982) Selection of afungus species, suitable for the biological control of the termite Nasutitermes exitiosus Hill. Z. Angew. Entomol. 94, 237245.CrossRefGoogle Scholar
Hanel, H. and Watson, J. A. L. (1983) Preliminary field tests on the use of Metarhhium anisopliae for the control of Nasutitermes exitiosus (Hill) (Isoptera: Termitidae) Bull. Entomol. Res. 73, 305313.CrossRefGoogle Scholar
Hussey, N. W. and Tinsley, T. W. (1981) Impressions of insect pathology in the People's Republic of China. In Microbial Control of Pests and Plant Diseases 1970–1980 (Edited by Burges, H. D.), pp. 785795, Academic Press, London, New York.Google Scholar
Ignoffo, C. M. and Garcia, C. (1985) Host spectrum and relative virulence of an Ecuadoran and Mississippian biotype of Nomuraea rileyi. J. Invertebr. Pathol. 45, 346352.CrossRefGoogle Scholar
Ignoffo, C. M., Hostetter, D. L., Biever, K. D., Garcia, G., Thomas, G. D., Dickerson, W. A. and Pinnell, R. (1978) Evaluation of an entomopathogenic bacterium, fungus and virus for control of Heliothis zea on soybeans. J. econ. Entomol. 71, 165168.CrossRefGoogle Scholar
Ignoffo, C. M., Puttier, B., Hostetter, D. L. and Dockerson, W. A. (1976) Susceptibility of the cabbage looper, Trichoplusia ni and the velvet bean caterpillar, Anticarsiagemmatalis to several isolates of the entomopathogenic fungus Nomuraea rileyi. J. Invertebr. Pathol. 28, 259262.CrossRefGoogle Scholar
Jayaraj, S. (1985) Biological suppression of insect pests through the use of entomopathogens. In Integrated Pest and Disease Management (Edited by Jayaraj, S.), pp. 319336TNAU, Coimbatore, India.Google Scholar
Jayaraj, S. (1986) Role of insect pathogens in plant protection. Proc. Indian. Natn. Sci. Acad. 52, 91107.Google Scholar
Keller, S. (1986) Quantitative ecological evaluation of the May beetle pathogen Beauveria brongniartii and its practical application. In Fundamental and Applied Aspects of Invertebrate Pathology (Edited by Samson, R. A., Vlak, J. M. and Peters, D.), pp. 178181. Foundation of the Fourth Int. Colloq. Invertebr. Pathol., Wageningen.Google Scholar
Keller, S. and Zimmermann, (1989) Mycopathogens of soil insects. In Insect-Fungus Interactions (Edited by Wilding, N., Collins, N. M., Hammond, P. M. and Webber, J. F.) pp. 240270, Academic Press, London, New York.Google Scholar
Kmitowa, K., Bajan, C. and Wojclechowska, M. (1977) Differences in the pathogenicity of entomopathogenic fungi from France and Poland. Polish Ecol. Studies 3, 115260.Google Scholar
Roberts, D. W. and Yendol, W. G. (1971) Use of fungi for microbial control of insects. In Microbial Control of Insects and Mites (Edited by Burges, H. D. and Hussey, N. W.) pp. 125149, Academic Press, London, New York.Google Scholar
Rombach, M. C., Aguda, R. M., Shepard, B. M. and Roberts, D. W. (1986) Infection of rice brown planthopper Nilaparvata lugens (Homoptera: Delphacidae) by field application of entomopathogenic hyphomycets (Deuteromycoùm). Environ, Entomol. 15, 10701073.Google Scholar
Sannasi, A. (1969) Apparent infections of queens and drones of the mound building termite Odontotermes obesus by Aspergillus flavus. J. Invertebr. Pathol. 10, 434535.CrossRefGoogle Scholar
Sikura, A. I. and Bevzenko, T. M. (1972) Toxic properties of Beauveria bassiana (Bals.) Vuill strains from insects. Vopr. Zasch. Rast. 17, 6874.Google Scholar
Walstad, J. D., Anderson, R. F. and Stambaug, W. J. (1970) Effects of environmental conditions on two species of muscardine fungi. Beauveria bassiana and Metarhizium anisopliae. J. Invertebr. Pathol. 16, 220226.CrossRefGoogle Scholar
Wood, S. P. and Grula, E. A. (1984) Utilizable surface nutrients on Heliothis zea available for growth of Beauveria bassiana. J. Invertebr. Pathol. 43, 259269.CrossRefGoogle Scholar