Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T04:44:53.077Z Has data issue: false hasContentIssue false

Insecticidal Activity of Bacillus spp. from Soil Samples in Pakistan against the House Fly, Musca domestica

Published online by Cambridge University Press:  19 September 2011

A. R. Shakoori
Affiliation:
Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, New Campus, Lahore 54560, Pakistan
Salma Afroz
Affiliation:
Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, New Campus, Lahore 54560, Pakistan
Nazia Khurshid
Affiliation:
Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, New Campus, Lahore 54560, Pakistan
Get access

Abstract

Soil samples collected from six localities in Pakistan—Peshawar, Quetta, Loralai, Sibi, Lahore and Sheikhupura—were screened for insecticidal Bacillus spp. Bacillus coagulane, B. megaterium and B. alvei, which constituted 50%, 33% and 17% of the Bacillus isolates respectively, were isolated and their toxicity was evaluated against larvae of the house fly, Musca domestica (Diptera: Muscidae). The most toxic bacterial isolate of the three was B. alvei (98.7% mortality) and the least toxic was B. megaterium (89.3% mortality). Extracts of experimental larvae showed the presence of strains of the respective species of Bacillus in all cases, indicating that the observed mortality in the house flies was caused by the Bacillus species.

Résumé

Des échantillons de sol prélevés dans six localités (Peshawar, Quetta, Loralai, Sibi, Lahore et Sheikhupura) au Pakistan ont été analysés afin d'y déceler des espèces de Bacillus spp. à pouvoir entomopathogène. Les isolais qui étaient constitués de 50% de Bacillus coagulans, 33% de B. megaterium et de 17% de B. alvei étaient testés pour leur toxicité vis-à-vis de la mouche domestique, Musca domestica (Diptera: Muscidae). L'isolât de B. alvei était le plus virulent des trois et il causait une mortalité de 98,7%, tandis que l'isolât de B. megaterium était le moins toxique avec une mortalité de 89,3%. Dans tous les cas examinés, les extraits obtenus des larves testées ont révélé la présence de souches de bacilles de trois espèces précitées. Ceci indique que la mortalité observée chez la mouche domestique était attribuable à ces trois espèces de Bacillus.

Type
Research Articles
Copyright
Copyright © ICIPE 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chak, K. F. and Young, Y. M. (1990) Characterization of Bacillus tliuringiensis strains isolated from Taiwan. Proc. Nati. Sci. Coirne. Repiib. China B 14, 175182.Google ScholarPubMed
Cheesbrough, M. (1985) Medical Laboratory Manual for Tropical Countries, Vol. II: Microbiology. Butterworth-Heinemann, Cambridge. 479 pp.Google Scholar
Chiang, A. S., Yen, D. F. and Peng, W. K. (1986) Germination and proliferation of Bacillus thuringiensis in the gut of rice moth larva Corcyra cephalonica. J. Invertebr. Pathol. 48, 9699.CrossRefGoogle Scholar
Collee, J. G. and Miles, R. S. (1989) Test for identification of bacteria, pp. 141160. In Practical Medical Microbiology (Edited by Collee, J. G., Duguid, J. P., Fraser, A. G. and Marmion, B. P.). Churchill Livingstone, Edinburgh.Google Scholar
Cunningham, J. C. (1988) Baculoviruses. Their status compared to Bacillus tliuringiensis as microbiol insecticide. Outlook Agrie. 17, 1017.CrossRefGoogle Scholar
DeLuca, A. J. II, Simonson, J. G. and Larson, A. D. (1981) Bacillus thuringiensis distribution in soils in the United States. Can. J. Microbiol. 27, 865870.CrossRefGoogle Scholar
Elespuru, R., Ijinksky, W. and Setlow, J. K. (1974) Nitrosocarbyl as potent mutagen of environmental significance. Nature (London) 247, 356387.CrossRefGoogle ScholarPubMed
Ertola, R. (1988) Production of Bacillus thuringiensis insecticides, pp. 187200. In Horizons of Biochemical Engineering (Edited by Aiba, S.). Exactas National University, La Plata, Argentina.Google Scholar
Ferro, D. N. and Gelernter, W. D. (1989) Toxicity of a new strain of Bacillus thuringiensis to Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Ent. 82, 750755.CrossRefGoogle Scholar
Gaerterner, F. H., Soares, G. G. and Payne, J. (1990) Novel Bacillus thuringiensis isolate. Mycogen Corporation, San Diego, CA (USA).Google Scholar
Gill, S. S., Cowles, E. A. and Pietrantonio, P. V. (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37, 615636.CrossRefGoogle ScholarPubMed
Goldberg, L. J. and Margalit, J. (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles serengetii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq. News 37, 355358.Google Scholar
Green, D. M. (1989) Bacillus species: Anthrax, pp. 392398. In Practical Medical Microbiology (Edited by Collee, J. G., Duguid, J. P., Fraserand, A.G., Marmion, B. P.). Churchill Livingstone, Edinburgh.Google Scholar
Green, M., Heumann, M., Sokolow, R., Foster, L. R., Bryant, R. and Skeels, M. (1990) Public health implications of the microbial pesticide Bacillus thuringiensis: An epidemiological study, Oregon 1985–86. Am. J. Pubi. Hlth 80, 848852.CrossRefGoogle ScholarPubMed
Hodgman, T. C., Zinlu, Y., Ming, S., Sawyer, T., Nicholls, C. M. and Ellar, D. J. (1993) Characterization of a Bacillus thuringiensis strain which is toxic to the house fly, Musca domestica. FEMS Microbiol. Letts. 114, 1722.CrossRefGoogle Scholar
Indrasith, L. S., Suzuki, N., Ogiwara, K., Asano, S. and Hori, H. (1992) Activated insecticide crystal proteins from Bacillus thuringiensis serovars killed adulthouse flies. Lett. Appi. Microbiol. 14, 174177.CrossRefGoogle Scholar
Lambert, B. and Peferoen, M. (1992) Insecticidal promise of Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. BioScience 42, 112122.CrossRefGoogle Scholar
Li, R., Dai, S., Li, X., Zhao, Y. and Sun, C. (1992) Morphology and delta-endotoxin proteins of Bacillus thuringiensis from soils and their toxicities to insects. Wei. Sheng. Wu. Hsueh. Pao. 32, 387393.Google ScholarPubMed
Manonmani, A. M., Rajendran, G. and Balaraman, K. (1991) Isolation of mosquito-pathogenic Bacillus sphaericus and Bacillus thuringiensis from the root surface of hydrophytes. Indian J. Med. Res. 93, 111— 114.Google ScholarPubMed
Martin, P. A. W. and Travers, R. S. (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appi. Environ. Microbiol. 55, 24372442.CrossRefGoogle ScholarPubMed
Mittal, P. K., Adak, T. and Sharma, V. P. (1993) Effects of temperature on toxicity of two bioinsecticides spherix (Bacillus sphaericus) and bactoculicide (Bacillus thuringiensis) against larvae of four vector mosquitoes. Indian J. Malariol. 30, 3741.Google ScholarPubMed
Morris, O. N. and Trollier, M. R. (1990) Toxic strains of bacterium Bacillus thuringiensis for control of Bertha armyworm Mamestra confugrata. Canadian Patents and Development Ltd. Ottawa, Canada.Google Scholar
Naik, S. R. (1997) Biocides, Bacillus sphaericus and Bacillus thuringiensis as potential mosquito larvicides. J. Sci. Ind. Res. 56, 651656.Google Scholar
Osman, G. Y., Salem, F. M. and Ghattas, A. (1988) Bio-efficacy of two bacterial insecticide strains of Bacilhts thuringiensis as biological control agent in comparison with nematicide, Nemacur on certain parasitic nerriatoda. Anz. Schaedlingskd. Pflanzenschutz. Umweltschutz. 61, 3537.CrossRefGoogle Scholar
Rishikesh, N. (1982) Planning and evaluation of large scale field trials with microbial control agents, pp. 501508. In Invertebrate Pathology and Microbial Control. Third International Colloquium on Invertebrate Pathology, Brighton, UK., September 6–10, 1982.Google Scholar
Shakoori, A. R. and Butt, M. Z. (1980) Thioacetamide induced inhibition of development in housefly. Pakistan J. Zool. 12, 247264.Google Scholar
Sneh, B. and Schuster, S. (1981) Recovery of Bacillus thuringiensis and other bacteria from larvae of Spodoptera littoralis previously fed B. thuringiensis treated leaves, J. Invertebr. Pathol. 37, 295303.CrossRefGoogle Scholar
Somers, J. D., Goshi, B. C., Barbean, J. M. and Barrett, M. W. (1993) Accumulation of organochlorine contaminants in double crested cormorants. Environ. Pollui. 80, 1723.CrossRefGoogle ScholarPubMed
Tabashnik, B. E., Cushing, N. L., Finson, N. and Johnson, M. W. (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Ent. 83, 16711676.CrossRefGoogle Scholar
Vankova, J. (1981) Housefly susceptibility to Bacillus thuringiensis var. israelensis and a comparison with the activity of other insecticidal bacterial preparations. Acta Entomol. Bohemoslov. 78, 358362.Google Scholar
Venugopal, M. G., Wolfersberger, M. G. and Wallace, B. A. (1992) Effects of pH on conformational properties related to the toxicity of Bacillus thuringiensis delta-endotoxin. Biochim. Biophys. Acta 1159, 185192.CrossRefGoogle Scholar
Williams, S. T. (1985) Bacteria in Their Natural Environments (Edited by Fletcher, M. and Floodgate, G. D.). Academic Press, London.Google Scholar
Wilton, B. E. and Klowden, M. J. (1985) Solubilized crystal of Bacillus thuringiensis subsp. israelensis: Effect on adult house flies, stable flies (Diptera:Muscidae), and green lacewings (Neuroptera: Chrysopidae). J. Am. Mosq. Control Assoc. 4, 9798.Google Scholar