Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T15:02:45.617Z Has data issue: false hasContentIssue false

Studies on electrophoretic protein patterns of fat body, haemolymph and ovary in an indian fresh water-bug, Laccotrephes rubra Linn. (Nepidae: Heteroptera)

Published online by Cambridge University Press:  19 September 2011

P. R. Yadav
Affiliation:
Department of Zoology, Banaras Hindu University, Varanasi-221 005, India
Dinesh Kumar
Affiliation:
Department of Zoology, Banaras Hindu University, Varanasi-221 005, India
Get access

Abstract

Polyacrylamide disc gel electrophoresis (PAGE) was performed on soluble proteins from the fat body, haemolymph (male and female), and ovary of the adult fresh water-bug, Laccotrephes rubra, in order to determine their protein patterns. The electrophoresis resulted in the separation of 16 and 17 protein components in male and female haemolymph respectively. In female fat body extracts 15 protein bands could be detected; whereas ovary extracts resolved into 11 protein bands only. Comparison of the electropherograms of protein pattern of fat body (FBPP), haemolymph (HPP) and ovary (OPP) revealed that the extra band present in the female haemolymph is common to both female fat body and ovary, which is suggestive of it being the female specific protein, i.e. vitellogenin. A careful examination of the various electropherograms further revealed that the majority of the protein bands of haemolymph and ovary are common to its corresponding fat body protein bands. This might suggest that the ovary derives most of its protein components from the surrounding haemolymph, which have presumably been synthesized and secreted by the fat body.

The histochemical analyses demonstrated that the female-specific protein band is a glycolipoprotein; and most of the haemolymph protein zones stain as glycoprotein, lipoprotein or ribonucleoprotein. ‘Stains-all’ technique however, revealed the presence of four possible RNA bands in fat body extracts.

Résumé

On procéda à une électrophorèse par gel polyacrylamide en disque (PAGE) sur des protéines solubles provenant de corps gras, de l'hémolymphe (mâle et femelle) et de l'ovaire de la punaise d'eau couce adulte, Laccotrephes rubra, afin de déterminer les modèles de protéines. L'électrophorèse permit d'identifier 16 et 17 composants protéiques dans l'hémolymphe mâle et femelle respectivement. Les extraits de corps gras femelles montraient 15 bandes protéiques, ceux de l'ovaire n'en montrant que 11. la comparaison des electrophorégrammes des modéles de protéines des corps gras (FBPP), de l'hémolymphe (HPP) et de l'ovaire (OPP) fait apparaître que la bande supplémentaire présente dans l'hémolymphe femelle se retrouve également dans les corps gras femelles et dans l'ovaire, ce qui permet de supposer qu'elle est la protéine spécifique femelle, c'est-à-dire la vitellogenèse. Un examen attentif des divers electrophorégrammes révéla par ailleurs que la majorité des bandes protéiques de l'hémolymphe et de l'ovaire se retrouvent dans ceux des corps gras leur correspondant. Ceci pourrait indiquer que l'ovaire obtient la plupart de ses composants protéiques de l'hémolymphe qui l'entoure, composants synthétisés et sécrétés par les corps gras.

Les analyses histochimiques démontrent que la protéine femelle spécifique est une glycolipoprotéine; et que la plupart des bandes protéiques de l'hémolymphe sont des glycoprotéines, des lipoprotéines ou des ribonucléoprotéines. Cependant la technique au stainsall révèle la présence de 4 bandes RNA possibles dans les extraits de corps gras.

Type
Research Articles
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agosin, M. (1978) Functional role of protein. In Biochemistry of Insects (Edited by Rockestein, M.), pp. 94144. Academic Press, London.Google Scholar
Boavida, M. G. and Roberts, D. B. (1975) Tissue antigen from the third instar larva of D. melanogaster. J. Insect Physiol. 21, 15871596.CrossRefGoogle Scholar
Brennan, M. D., Weiner, A. J., Goralski, T. J. and Mahowald, A. P. (1982) The follicle cells are a major site of vitellogenin synthesis in D. melanogaster. Devi Biol. 89, 225236.CrossRefGoogle Scholar
Brookes, V. J. (1969) The induction of yolk protein synthesis in the fat body of an insect. L. maderae by an analogue of juvenile hormone. Devi Biol. 20, 459471.CrossRefGoogle Scholar
Caldwell, R. C. and Pigman, W. (1965) Disc electrophoresis of human saliva in polyacrylamide gel. Archs Biochem. Biophys. 110, 9196.CrossRefGoogle ScholarPubMed
Chen, P. S. (1966) Amino acids and protein metabolism in insect development. Adv. Insect Physiol. 3, 53132.CrossRefGoogle Scholar
Chen, P. S. and Levenbook, L. (1966) Studies on haemolymph proteins of blowfly P. regina. I. Changes in ontogenic patterns. J. Insect Physiol. 12, 15951609.CrossRefGoogle Scholar
Chippendale, G. M. and Beck, S. D. (1966) Haemolymph proteins of Ostrinia nubilalis during diapause and prepupal differentiation. J. Insect Physiol. 21, 16291638.CrossRefGoogle Scholar
Davis, B. J. (1964) Disc electrophoresis. II. Method and application to human serum protein. N.Y. Acad. Sci. 121, 404427.CrossRefGoogle Scholar
Dittmann, F., Trenjek, T. and Stumpf, I. K. (1985) JH control vitellogenin cycles in Dysdercus intermedius (Heteroptera). J. Insect Physiol. 31, 729739.CrossRefGoogle Scholar
Elliott, R. H. and Gillott, G. (1979) An electrophoretic study of proteins of ovary, fat body and haemolymph in migratory grasshopper, M. sanguinipes. J. Insect Physiol. 25, 405410.CrossRefGoogle Scholar
Engelmann, F. (1979) Insect vitellogenin: identification, biosynthesis and role in vitellogenesis. In Advances in Insect Physiology Vol. 14, pp. 49108. Academic Press, New York.Google Scholar
Engelmann, F. (1984) JH binding compounds in haemolymph and tissues of an insect. The functional significance. Adv. Invertebr. Reprod. 3, 177187.Google Scholar
Ephrussi, B. and Beadle, G. W. (1936) A technique of transplantation for Drosophila. Am. Nat. 70, 218225.CrossRefGoogle Scholar
Ferenz, H. J. and Lubzens, E. (1981) Vitellin and vitellogenin incorporation by isolated oocytes of L. migratoria migratorioides R. F. J. Insect Physiol. 27, 869875.CrossRefGoogle Scholar
Gunawan, S. and Engelmann, F. (1984) Esterolytic degradation of JH in the haemolymph of the adult female of L. maderae. Insect Biochem. 14, 601607.CrossRefGoogle Scholar
Hagedorn, H. H. and Kunkel, J. G. (1979) Vitellogenin and vitellin in insects. A. Rev. Ent. 24, 475505.CrossRefGoogle Scholar
Harnish, D. G. and White, B. N. (1982) Insect vitelline: identification, purification, and characterization from eight orders. J. exp. Zool. 220, 110.CrossRefGoogle Scholar
Hill, H., Luntz, A. J. and Steele, P. A. (1968) The relationship between somatic growth and feeding activity in adult desert locust. J. Insect Physiol. 14, 120.CrossRefGoogle Scholar
Kim, H. R. and Seo, E. W. (1980) Changes of haemolymph protein in Pieris rapae L. during cuticle formation and hardening process. Korean J. Zool. 23, 112.Google Scholar
Kim, H. R. and Seo, E. W. (1981) A change of haemolymph proteins during metamorphosis of P. rapae L. Korean J. Ent. XI, 3341.Google Scholar
Kort, C. A. D. de and Granger, N. A. (1981) Regulation of the JH titer. A. Rev. Ent. 26, 128.CrossRefGoogle Scholar
Kramer, K. J., Sanburg, L. L., Kezdy, F. J. and Law, J. H. (1974) The JH binding protein in the haemolymph of Manduca sexta (Lepidoptera: Sphingidae). Proc. natn. Acad. Sci. U.S.A. 71, 493497.CrossRefGoogle Scholar
Kumar, D. (1979) On the contribution of haemolymph to the salivary proteins of the red cotton bug, Dysdercus koenigii F. (Heteroptera: Pyrrhocoridae). Experientia 35, 765766.CrossRefGoogle Scholar
Lamy, M. (1984) Vitellogenesis, vitellogenin and vitellin in males of insects: a review. Int. J. Invertebr. Reprod. Devl. 7, 311321.CrossRefGoogle Scholar
Laufer, H. (1960) Blood protein in insect development. Ann. N.Y. Acad. Sci. 89, 490515.CrossRefGoogle Scholar
Laufer, H. and Nakase, Y. (1965) The salivary gland secretion and its relation to chromosomal puffing in the dipteran Chironomus thummi. Proc. natn. Acad. Sci. U.S.A. 53, 511516.CrossRefGoogle ScholarPubMed
Loughton, B. G. and West, A. S. (1965) The development and distribution of haemolymph protein in Lepidoptera. J. Insect Physiol. 11, 919932.CrossRefGoogle Scholar
Lubzens, E., Tietz, A., Pines, M. and Applebaum, S. W. (1981) Lipid accumulation in oocytes of L. migratoria migratorioides. Insect Biochem. 11, 323329.CrossRefGoogle Scholar
Pan, M. L., Bel, W. J. and Telfer, W. H. (1969) Vitellogenic blood proteins synthesis by insect fat body. Science 165, 393394.CrossRefGoogle ScholarPubMed
Pant, R. and Agarwal, H. C. (1965) Some quantitative changes observed in Philosamia pupal haemolymph during metamorphosis. Biochem. J. 96, 824828.CrossRefGoogle ScholarPubMed
Schmidt, G. H., Asche, W. and Winkler, I. (1982) Disc electrophoretic pattern of proteins during the post embryonic development of Formica polyctena F. (Hymen.: Form.) after treatment with SDS. Comp. Biochem. Physiol. 73B, 283296.Google Scholar
Shukla, R. N. and Pathak, S. C. (1975) Relationship between corpus allatum and haemolymph proteins in Sphaerodema rusticum F. Z. mikrosk.-anat. Forsch. Leipzig 90, 427434.Google Scholar
Siakotos, A. W. (1960) The conjugated plasma protein of the American cockroach. II. Changes during moulting and clotting processes. J. gen. Physiol. 43, 10151030.CrossRefGoogle ScholarPubMed
Srivastava, R. P. (1970) Electrophoretic behaviour of cuticular proteins of different developmental stages of Galleria mellonella. J. Insect Physiol. 17, 23452351.CrossRefGoogle Scholar
Srivastava, R. P. and Pareek, B. L. (1976) Protein changes in the young pupa and pharate adult of Prodenia litura F. (Lepidoptera: Noctuidae). Comp. Physiol. Ecol. 1, 14.Google Scholar
Telfer, W. H. and Williams, C. M. (1953) Immunological studies of insect metamorphosis. I. Qualitative and quantitative changes in blood protein of Cecropia silk worm. J. gen. Physiol. 36, 389–113.CrossRefGoogle Scholar
Telfer, W. H. (1954) Immunological studies of insect metamorphosis. II. The role of sex limited female protein in egg formation by Cecropia silk worm. J. gen. Physiol. 37, 539548.CrossRefGoogle Scholar
Vansande, M. and Karcher, D. (1960) Species differentiation of insects by haemolymph electrophoresis. Science 131, 11031104.CrossRefGoogle Scholar
Wang, G. M. and Patton, R. L. (1968) The separation and characterization of the haemolymph proteins of several insects. J. Insect Physiol. 14 10691075.CrossRefGoogle Scholar
Wheeler, C. H. (1981) Haemolymph proteins and lipid transport in Locusta migratoria. Ph. D. thesis, University of Hull.Google Scholar
Whittaker, J. R. and West, A. S. (1962) A startch gel electrophoresis study of insect haemolyph protein. Can. J. Zool. 40, 655671.CrossRefGoogle Scholar
Wyatt, G. R. and Pan, M. L. (1978) Insect plasma proteins. A. Rev. Biochem. 47, 779817.CrossRefGoogle ScholarPubMed
Wyatt, G. R. (1980) The fat body as a protein factory. In Insect Biology in the Future (Edited by Locke, M. and Smith, D. S.), pp. 201225. Academic Press, New York.CrossRefGoogle Scholar
Wyss-Huber, M. and Lüscher, M. (1972) In vitro synthesis and release of proteins by fat body and ovarian tissue of L. maderae during sex cycle. J. Insect Physiol. 18, 689710.CrossRefGoogle Scholar
Yoo, C. M. and Lee, K. R. (1975) Studies on the haemolymph proteins during the metamorphosis of pine moth Dendrolimus spectabilis (B). Korean J. Zool. 17, 8192.Google Scholar
Zhai, Q. H., Postlethwait, J. H. and Bodley, J. W. (1984) Vitellogenin synthesis in the lady beetle Coccinella septempunctata. Insect Biochem. 14, 299305.CrossRefGoogle Scholar