Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T02:36:44.688Z Has data issue: false hasContentIssue false

Electrophoretic variation in wild Anopheles pharoensis Theobald in Mwea Irrigation Scheme, Kenya

Published online by Cambridge University Press:  19 September 2011

J. V. Mudegu
Affiliation:
Kenya Medical Research Institute, V. B. C. R. C., P. O. Box 1578, Kisumu, Kenya
T. K. Mukiama
Affiliation:
Department of Botany, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
Get access

Abstract

The electrophoretic variation of four enzymes of wild Anopheles pharoensis in Mwea Irrigation Scheme, Kenya, was studied between 1987 and 1988. The enzyme loci examined were aldehyde oxidase, a-glycerophosphate dehydrogenase, β-hydroxyacid dehydrogenase and lactate dehydrogenase. All the loci examined were dimorphic. A mean heterozygosity (H) of 0.341 was obtained, which is comparable to values for other mosquito species. The allelic frequencies were in genetic disequilibrium compared to Hardy-Weinberg predictions. It is proposed that there may be more than one species in the taxon Anopheles pharoensis.

Résumé

Une étude de variation electrophorétique de 4 enzymes chez des populations sauvages de Anopheles pharoensis a été menée dans le projet d'irrigation de Mwea, Kenya, entre 1987 et 1988. Les loci d'enzymes éxaminés ont ete aldéhyde oxidase, α-glycerophosphate dehydrogenase, β-hydroxyacid dehydrogenase et lactate dehydrogenase. Cette étude démontre un bas niveau de variation des allèles et tous les loci sont dimorphiques. La moyenne calculée pour l'hétérozygosité est de 0,341 et cette valeur est comparable aux valeurs d'autres espèces de moustique. Les fréquences des alíeles dans les populations étudiées sont en déséquilibre génétique selon les prévisions de Hardy-Weinberg. Ces résultats confirment la proposition d'autres chercheurs disant qu'il y a peut-etre plus d'une espèce dans le taxon de Anopheles pharoensis.

Type
Short Communications
Copyright
Copyright © ICIPE 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carrara, G. C., Petrarca, V., Niang, M. and Coluzzi, M. (1990) Anopheles pharoensis and transmission of Plasmodium falciparum in the Senegal River Delta, West Africa. Med. Vet. Entomol. 4, 421424.CrossRefGoogle ScholarPubMed
Dobzhansky, T., Ayala, F. J., Stebbins, G. L. and Valentine, J. W. (1977) Evolutions. H. Freeman and Co., San Francisco.Google Scholar
El Safi, S. H. and Haridi, M. (1986) Field trial of the insect growth regulator, Dimilin for the control of Anopheles pharoensis in Gezira, Sudan. J. Am. Mosq. Control Assoc. 2, 374375.Google ScholarPubMed
El Said, S., Beir, J. C., Kenawy, M. A., Morsy, Z. S. and Merdan, A. I. (1986) Anopheles population dynamics in two malaria endemic villages of Faiyum Governorate, Egypt. J. Am. Mosq. Control Assoc. 2, 158163.Google ScholarPubMed
Garret-Jones, C. (1950) A dispersion of mosquitoes by wind. Nature 165, 285.CrossRefGoogle Scholar
Gillies, M. T. and de Meillon, B. (1968) The anophelinae of Africa south of the Sahara (Ethiopia Zoogeographical Region), 2nd edition. South African Institute of Medical Research, Publication No. 54, Johannesburg.Google Scholar
Hames, R. D. and Rickwood, D. (1981) Gel Electrophoresis of Proteins: A Practical Approach. Oxford University Press.Google Scholar
Miles, S. J., Green, C. A. and Hunt, R. H. (1983) Genetic observations on the taxon Anopheles (Cellia) pharoensis Theobald [Diptera: Culicidae]. J. Trop. Med. Hyg. 86, 153157.Google ScholarPubMed
Miles, S. J. and Paterson, H. E. (1979) Protein variation and systematics in Culexpipiens group of species. Mosq. Syst. 11, 187202.Google Scholar
Mukiama, T. K. (1987) Genetic variation in wild Anopheles arabiensis Patton of Mwea Irrigation Scheme, Kenya. Insect Sci. Applic. 8, 245249.Google Scholar
Mukiama, T. K. and Mwangi, R. W. (1989) Seasonal population changes and malaria transmission potential of Anopheles pharoensis and the minor anophelines in Mwea Irrigation Scheme, Kenya. Acta Tropica 46, 181189.CrossRefGoogle ScholarPubMed
Narang, S. and Seawright, J. A. (1982) Linkage relationships and genetic mapping in Culex and Anopheles. In Proc. Recent Developments in Genetics of Insect Vectors (Edited by Steiner, W. W. M., Tabachnick, W. J., Rai, K. S. and Narang, S.), pp. 231289. Stipes Publ. Co., Champaign, IL.Google Scholar
Nei, M. and Roychoudhry, A. K. (1973) Sampling variances of heterozygosity and genetic distances. Genetics 76, 379390.CrossRefGoogle Scholar
Othmar, G. (1972) Locating enzymes on gels. In Methods in Enzymology (Edited by Colo Wick, S. P. and Kaplan, N. O.), pp. 578604. Academic Press, New York.Google Scholar
Sidky, H. S. A. and Riad, Z. M. (1976) A chromosome map of the salivary gland chromosomes of Anopheles pharoensis. J. Egyptian Soc. Parasitol. 6, 153.Google Scholar
Steiner, W. W. M. and Joslyn, D. J. (1979) Electrophoretic techniques for the genetic study of mosquitoes. Mosq. News 39, 3554.Google Scholar
Surtees, G. (1971) Control of mosquitoes breeding in rice fields. J. Trop. Med. Hyg. 74, 255259.Google Scholar
Tabachnick, W. J., Munstermann, L. E. and Powell, J. R. (1979) Genetic distinctness of sympatric forms of Aedes aegypti in East Africa. Evolution 33, 286295.CrossRefGoogle ScholarPubMed
Tabachnick, W. J. and Powell, J. R. (1979) A worldwide survey of genetic variation in the yellow fever mosquito Aedes aegypti. Genet. Res. 34, 215229.CrossRefGoogle ScholarPubMed
White, G. B. (1984) Needs and progress in the application of new techniques to mosquito identification. In New Approaches to the Identification of Parasites and their Vectors (Edited by Newton, B. N. and Michael, F.). Tropical Disease Research Series No. 5. WHO, Geneva.Google Scholar