Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T23:25:25.977Z Has data issue: false hasContentIssue false

The set of habitable planets and astrobiological regulation mechanisms

Published online by Cambridge University Press:  17 February 2010

Branislav Vukotić
Affiliation:
Astronomical Observatory Belgrade, Volgina 7, 11160 Belgrade 74, Serbia e-mail: bvukotic@aob.rs

Abstract

The number of habitable planets in the Milky Way and its temporal variation are major unknowns in the nascent fields of astrobiology and Search for ExtraTerrestrial Intelligence studies. All numerical models developed thus far have suffered from large uncertainties in the input data, in addition to our lack of understanding of the processes of astrobiological dynamics. Here, we argue that at least the input data can now be specified with more confidence, and use a simple Monte Carlo model of the Galactic Habitable Zone (GHZ) as a flexible platform for their elucidation. Previous papers have described some of the major results of this class of models; in this paper we present its mechanics and input parameters, notably the number of the habitable planets in the GHZ and their temporal distribution, based on the results of Lineweaver et al. (Lineweaver, C.H., Fenner, Y. & Gibson, B.K. (2004). Science303, 59–62.) Regulation mechanisms (such as gamma-ray bursts or supernovae) and their temporal evolution, assumed to be main agents responsible for large-scale correlation effects, are modelled as type α (which can sterilize part of or the entire GHZ) and type β (which are of local importance) events with decreasing mean temporal frequency over the cosmological timescale. The considered global risk function implies as an upper limit that about one out of a hundred habitable sites will achieve high astrobiological complexity. The preliminary results of numerical modelling presented here and elsewhere imply that the lack of a sudden change from an essentially dead Galaxy to a Galaxy filled with complex life – the astrobiological phase transition – in our past (a version of Fermi's paradox) may be understood as a consequence of global astrobiological disequilibrium, strongly indicating such a transitional epoch in our future.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, F.C., Hollenbach, D., Laughlin, G. & Gorti, U. (2004). Astrophys. J. 611, 360379.CrossRefGoogle Scholar
Bensby, T., Zenn, A.R., Oey, M.S. & Feltzing, S. (2007). Astrophys. J. 663, L13.CrossRefGoogle Scholar
Bjrk, R. (2007). Int. J. Astrobiol. 6(2), 8993.CrossRefGoogle Scholar
Bromm, V. & Loeb, A. (2002). Astrophys. J. 575, 111116.CrossRefGoogle Scholar
Ćirković, M.M. (2005). Boundaries of the habitable zone: unifying dynamics, astrophysics, and astrobiology. In Dynamics of Populations of Planetary systems, ed. Knezevic, Z. & Milani, A., Proc. IAU, Colloquium #197, pp. 113118. Cambridge University Press, Cambridge.Google Scholar
Ćirković, M.M. (2007). Int. J. Astrobiol. 6, 325329, arXiv: 0709.2309v1 [astro-ph].CrossRefGoogle Scholar
Ćirković, M.M. (2009). Serb. Astron. J. 178, 120.CrossRefGoogle Scholar
Ćirković, M.M. & Vukotić, B. (2008). Orig. Life Evol. Biosph. 38, 535547.CrossRefGoogle Scholar
Ćirković, M.M.Vukotić, B. & Dragićević, I. (2009). Astrobiology 9, 491.CrossRefGoogle ScholarPubMed
Clark, D.H., McCrea, W.H. & Stephenson, F.R. (1977). Nature 265, 318319.CrossRefGoogle Scholar
Clark, D.H. & Stephenson, F.R. (1977). The Historical Supernovae. Pergamon Press, New York.Google Scholar
Dar, A., Laor, A. & Shaviv, N.J. (1998). Phys. Rev. Lett. 80, 58135816.CrossRefGoogle Scholar
Emel'Yanenko, V.V., Asher, D.J. & Bailey, M.E. (2007). Mon. Not. R. Astron. Soc. 381, 779.CrossRefGoogle Scholar
Fernández, D., Figueras, F. & Torra, J. (2001). Astron. Astrophys. 372, 833850.CrossRefGoogle Scholar
Fischer, D.A. & Valenti, J. (2005). Astrophys. J. 622, 11021117.CrossRefGoogle Scholar
Forgan, D. (2009). Int. J. Astrobiol. 8(2), 121131.CrossRefGoogle Scholar
Forgan, D. & Rice, K. (2010). Numerical testing of the Rare Earth hypothesis using Monte Carlo realisation techniques. Int. J. Astrobiol. Preprint, arXiv:1001.1680.CrossRefGoogle Scholar
Franck, S., von Bloh, W. & Bounama, C. (2007). Int. J. Astrobiol. 6, 153157.CrossRefGoogle Scholar
Galante, D. & Horvath, J.E. (2007). Int. J. Astrobiol. 6, 1926.CrossRefGoogle Scholar
Gies, D.R. & Helsel, J.W. (2005). Astrophys. J. 626, 844848.CrossRefGoogle Scholar
Goncharov, G.N. & Orlov, V.V. (2003). Astron. Rep. 47, 925933.Google Scholar
Gonzalez, G. (2005). Orig. Life Evol. Biosph. 35, 555606.CrossRefGoogle Scholar
Gonzalez, G., Brownlee, D. & Ward, P. (2001). Icarus 152, 185200.CrossRefGoogle Scholar
Heath, M.J., Doyle, L.R., Joshi, M.M. & Haberle, R.M. (1999). Orig. Life Evol. Biosph. 29, 405424.CrossRefGoogle Scholar
Iorio, L. (2010). Anthropic constraints on the cosmological constant from Sun's motion through the Milky Way. Mon. Not. R. Astron. Soc. Preprint, arXiv:0911.2189.CrossRefGoogle Scholar
Israelian, G. (2005). Astron. Nachr. 326(10), 10531056.CrossRefGoogle Scholar
Karam, P.A. (2002). Radiat. Phys. Chem. 64, 7787.Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108128.CrossRefGoogle Scholar
Kroupa, P. (2002). Science 295, 8291.CrossRefGoogle Scholar
Léger, A. et al. (2004). Icarus 169, 499.CrossRefGoogle Scholar
Li, L.X. (2008). Mon. Not. R. Astron. Soc. 388, 14871500.CrossRefGoogle Scholar
Lineweaver, C.H. (2001). Icarus 151, 307313.CrossRefGoogle Scholar
Lineweaver, C.H., Fenner, Y. & Gibson, B.K. (2004). Science 303, 5962.CrossRefGoogle Scholar
Marochnik, L.S. (1983). Astrophys. Space Sci. 89, 6175.Google Scholar
Matese, J. & Whitmire, D. (1996). Astrophys. J. 472, L41.CrossRefGoogle Scholar
McCrea, W.H. (1975). Observatory 95, 239255.Google Scholar
Melott, A.L., Lieberman, B.S., Laird, C.M., Martin, L.D., Medvedev, M.V., Thomas, B.C., Cannizzo, J.K., Gehrels, N. & Jackman, C.H. (2004). Int. J. Astrobiol. 3, 5561.CrossRefGoogle Scholar
Naab, T. & Ostriker, J.P. (2006). Mon. Not. R. Astron. Soc. 366, 899917.CrossRefGoogle Scholar
Pena-Cabrera, G.V.Y. & Durand-Manterola, H.J. (2004). Adv. Space Res. 33, 114117.CrossRefGoogle Scholar
Prantzos, N. (2008). Space Sci. Rev. 135, 313322.CrossRefGoogle Scholar
Raymond, S.N., Scalo, J. & Meadows, V.S. (2007). Astrophys. J. 669, 606614.CrossRefGoogle Scholar
Reddy, B.E. (2007). Decomposition of the Galactic disk: abundances and kinematics. In Stellar Populations as Building Blocks of Galaxies, ed. Vazdekis, A. & Peletier, R.F., Proc. IAU Symposium #241, pp. 209212. Cambridge University Press, Cambridge.Google Scholar
Robin, A.C., Reylé, C., Derrière, S. & Picaud, S. (2003). Astron. Astrophys. 409, 523540.CrossRefGoogle Scholar
Scalo, J. & Wheeler, J.C. (2002). Astrophys. J. 566, 723737.CrossRefGoogle Scholar
Shaviv, N.J. (2003). New Astron. 8, 3977.CrossRefGoogle Scholar
Tadross, A.L. (2003). New Astron. 8, 737744.Google Scholar
Tarter, J.C. et al. (2007). Astrobiology 7, 3065.CrossRefGoogle Scholar
Thomas, B.C. (2009). Gamma-ray bursts as a threat to life on Earth. Int. J. Astrobiol. 8(3), 183186. Preprint, arXiv:0903.4710v1 [astro-ph].CrossRefGoogle Scholar
Vukotić, B. & Ćirković, M.M. (2007). Serb. Astron. J. 175, 4550, arXiv: 0712.1508v3 [astro-ph], (Paper I).Google Scholar
Vukotić, B. & Ćirković, M.M. (2008). Serb. Astron. J. 176, 7179.CrossRefGoogle Scholar
Zhang, B. & Mészáros, P. (2004). Int. J. Mod. Phys. 19, 23852472.CrossRefGoogle Scholar