Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T12:39:07.308Z Has data issue: false hasContentIssue false

Salinity and pH affect Na+-montmorillonite dissolution and amino acid adsorption: a prebiotic chemistry study

Published online by Cambridge University Press:  23 June 2014

Ana Paula S. F. Farias
Affiliation:
Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina-PR, Brazil
Yasmin S. Tadayozzi
Affiliation:
Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina-PR, Brazil
Cristine E. A. Carneiro
Affiliation:
Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina-PR, Brazil
Dimas A. M. Zaia*
Affiliation:
Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina-PR, Brazil
*

Abstract

The adsorption of amino acids onto minerals in prebiotic seas may have played an important role for their protection against hydrolysis and formation of polymers. In this study, we show that the adsorption of the prebiotic amino acids, glycine (Gly), α-alanine (α-Ala) and β-alanine (β-Ala), onto Na+-montmorillonite was dependent on salinity and pH. Specifically, adsorption decreased from 58.3–88.8 to 0–48.9% when salinity was increased from 10 to 100–150% of modern seawater. This result suggests reduced amino acid adsorption onto minerals in prebiotic seas, which may have been even more saline than the tested conditions. Amino acids also formed complexes with metals in seawater, affecting metal adsorption onto Na+-montmorillonite, and amino acid adsorption was enhanced when added before Na+-montmorillonite was exposed to high saline solutions. Also, the dissolution of Na+-montmorillonite was reduced in the presence of amino acids, with β-Ala being the most effective. Thus, prebiotic chemistry experiments should also consider the integrity of minerals in addition to their adsorption capacity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AWWA-APHA-WPCI (2006). Standard Methods for the Examination of Water and Wastewater. 20th edn., American Public Health Association.Google Scholar
Baú, J.P.T. et al. (2012). Adsorption of adenine and thymine on zeolites: FT-IR and EPR spectroscopy and X-ray diffractometry and SEM studies. Orig. Life Evol. Biosph. 42, 1929.Google Scholar
Benetoli, L.O.B., de Souza, C.M.D., da Silva, K.L., de Souza, I.G. Jr., de Santana, H., Paesano, A. Jr., da Costa, A.C.S., Zaia, C.T.B.V. & Zaia, D.A.M. (2007). Amino acid interaction with and adsorption on clays: FT-IR and Mössbauer spectroscopy and X-ray diffractometry investigations. Orig. Life Evol. Biosph. 37, 479493.CrossRefGoogle ScholarPubMed
Bernal, J.D. (1951). The Physical Basis of Life. Routledge and Kegan Paul Ltd., London.Google Scholar
Charlet, L. & Tournassat, C. (2005). Fe(II)–Na(I)–Ca(II) Cation exchange on montmorillonite in chloride medium: evidence for preferential clay adsorption of chloride – metal ion pairs in seawater. Aquat. Geochem. 11, 115137.Google Scholar
Duc, M., Cartereta, C., Thomas, F. & Gaboriaud, F. (2008). Temperature effect on the acid–base behaviour of Na-montmorillonite. J. Colloid Interface Sci. 327, 472476.Google Scholar
Dudev, T. & Lim, C. (2003). Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem. Rev. 103, 773787.CrossRefGoogle ScholarPubMed
Fu, L., Weckhuysen, B.M., Verberckmoes, A.A. & Schoonheydt, R.A. (1996). Clay intercalated Cu(II) amino acid complexes: synthesis, spectroscopy and catalysis. Clay Miner. 31, 491500.Google Scholar
Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A. & Yang, H. (2008). Mineral evolution. Am. Mineral. 93, 16931720.Google Scholar
Hedges, J.I. (1977). The association of organic molecules with clay minerals in aqueous solutions. Geochim. Cosmochim. Acta 41, 11191123.Google Scholar
Holm, N.G. & Andersson, E. (2005). Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review. Astrobiology 5, 444460.Google Scholar
Horiuchi, T., Takano, Y., Ishibashi, J., Marumo, K., Urabe, T. & Kobayashi, K. (2004). Amino acids in water samples from deep sea hydrothermal vents at Suiyo Seamount, Izu-Bonin Arc, Pacific Ocean. Org. Geochem. 35, 11211128.Google Scholar
Jalali, M. (2008). Effect of sodium and magnesium on kinetics of potassium release in some calcareous soils of western Iran. Geoderma 145, 207215.Google Scholar
Jaynes, W.F. & Bigham, J.M. (1986). Multiple cation-exchange capacity measurements on standard clays using a commercial mechanical extractor. Clays Clay Miner. 34, 9398.Google Scholar
Jonsson, C.M., Jonsson, C.L., Estrada, C., Sverjensky, D.A., Cleaves, H.J. II & Hazen, R.M. (2010). Adsorption of L-aspartate to rutile (α-TiO2): experimental and theoretical surface complexation studies. Geochim. Cosmochim. Acta 74, 23562367.Google Scholar
Kawano, M. & Obokata, S. (2007). The effect of amino acids on the dissolution rates of amorphous silica in near-neutral solution. Clays Clay Miner. 55, 361368.Google Scholar
Kawano, M., Hatta, T. & Hwang, J. (2009). Enhancement of dissolution rates of amorphous silica by interaction with amino acids in solution at pH 4. Clays Clay Miner. 57, 161167.Google Scholar
Knauth, L.P. (1998). Salinity history of the Earth's early ocean. Nature 395, 554555.Google Scholar
Lahav, N. & Chang, S. (1976). The possible role of solid surface area in condensation reactions during chemical evolution: reevaluation. J. Mol. Evol. 8, 357380.CrossRefGoogle ScholarPubMed
Lahav, N., White, D. & Chang, S. (1978). Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201, 6769.Google Scholar
Lambert, J.F. (2008). Adsorption and polymerization of amino acids on mineral surfaces: a review. Orig. Life Evol. Biosph. 38, 211242.Google Scholar
Naidja, A. & Huang, P.A. (1994). Aspartic acid interaction with Ca-montmorillonite: adsorption, desorption and thermal stability. Appl. Clay Sci. 9, 265281.Google Scholar
Norén, K., Loring, J.S. & Persson, P. (2008). Adsorption of alpha amino acids at the water/goethite interface. J. Colloid Interface Sci. 319, 416428.Google Scholar
Ramos, E. & Huertas, F.J. (2013). Adsorption of glycine on montmorillonite in aqueous solutions. Appl. Clay Sci. 80–81, 1017.Google Scholar
Rodella, A.A. & Alcarde, J.C. (1994). Avaliação de materiais orgânicos empregados como fertilizantes. Sci. Agricola 51, 556562.Google Scholar
Remko, M. & Rode, B. M. (2006). Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine. J. Phys. Chem. A 110, 19601967.Google Scholar
Rozalén, M.L., Javier Huertas, F., Brady, P.V., Cama, J., García-Palma, S. & Linares, J. (2008). Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25 °C Geochim. Cosmochim. Acta 72, 42244253.Google Scholar
Rozalen, M., Brady, P.V. & Javier Huertas, F. (2009). Surface chemistry of K-montmorillonite: ionic strength, temperature dependence and dissolution kinetics. J. Colloid Interface Sci. 333, 474484.Google Scholar
Schoonen, M., Smirnov, A. & Cohn, C. (2004). A perspective on the role of minerals in prebiotic synthesis. Ambio 33, 539551.Google Scholar
Shankar, R., Kolandaivela, P. & Senthilkumara, L. (2011). Interaction studies of cysteine with Li+, Na+, K+, Be2+, Mg2+, and Ca2+ metal cation complexes. J. Phys. Org. Chem. 24, 553567.Google Scholar
Siri, N., Lacroix, M., Garrigues, J.C., Poinsot, V. & Couderc, F. (2006). HPLC-fluorescence detection and MEKC-LIF detection for the study of amino acids and catecholamines labelled with naphthalene-2,3-dicarboxyaldehyde. Electrophoresis 27, 44464455.Google Scholar
Smith, R.M., Motekaitis, R.J. & Martell, A.E. (1985). Prediction of stability constants. II. Metal Chelates of natural alkyl amino acids and their synthetic analogs. Inorg. Chim. Acta 103, 7382.Google Scholar
Williams, S. (ed.) (1984). Official Methods of Analysis of the Association of Official Analytical Chemists. 14th edn., AOAC, Arlington, p. 1141.Google Scholar
Yatsimirskii, K.B. & Vasilev, V.P. (1960). Instability Constants of Complex Compounds. Consultants Bureau Enterprises Inc., New York, pp. 170172.Google Scholar
Zaia, D.A.M. (2004). Review of adsorption of amino acids on minerals: was it important for origin of life. Amino Acids 27, 113118.Google Scholar
Zaia, D.A.M. (2012). Adsorption of amino acids and nucleic acid bases onto minerals: a few suggestions for prebiotic chemistry experiments. Int. J. Astrobiol. 11, 229234.Google Scholar
Zaia, D.A.M., Zaia, C.T.B.V. & de Santana, H. (2008). Which amino acids should be used in prebiotic chemistry studies? Orig. Life Evol. Biosph. 38, 469488.Google Scholar