Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T00:01:15.880Z Has data issue: false hasContentIssue false

Laboratory simulation of UV irradiation from the Sun on amino acids. I: irradiation of tyrosine

Published online by Cambridge University Press:  24 April 2007

F. Scappini
Affiliation:
Istituto per lo Studio dei Materiali Nanostrutturati del C.N.R., Via P. Gobetti, 101, 40129 Bologna, Italy
F. Casadei
Affiliation:
Istituto per lo Studio dei Materiali Nanostrutturati del C.N.R., Via P. Gobetti, 101, 40129 Bologna, Italy
R. Zamboni
Affiliation:
Istituto per lo Studio dei Materiali Nanostrutturati del C.N.R., Via P. Gobetti, 101, 40129 Bologna, Italy
S. Monti
Affiliation:
Istituto per la Sintesi Organica e la Fotoreattività del C.N.R., Via P. Gobetti, 101, 40129 Bologna, Italy e-mail: f.scappini@bo.ismn.cnr.it
P. Giorgianni
Affiliation:
Istituto per la Sintesi Organica e la Fotoreattività del C.N.R., Via P. Gobetti, 101, 40129 Bologna, Italy e-mail: f.scappini@bo.ismn.cnr.it
M.L. Capobianco
Affiliation:
Istituto per la Sintesi Organica e la Fotoreattività del C.N.R., Via P. Gobetti, 101, 40129 Bologna, Italy e-mail: f.scappini@bo.ismn.cnr.it

Abstract

The effects of ultraviolet (UV) irradiation on water solutions of tyrosine (HO—C6H4—CH2—CHNH2—COOH) have been investigated using a Xe lamp in the region 200–800 nm. This is a step in laboratory simulation towards reproducing the action of the Solar radiation on the building blocks of life, specifically α-amino acids, in the primitive Earth anoxic conditions. Results are presented showing the photostability of tyrosine against different UV doses. Degradation products partly maintain life building capability and partly do not. A tendency towards structure complexification was observed. The analysis of the irradiated tyrosine solutions was conducted using various spectroscopic and analytic techniques. The laboratory results are discussed in the light of a primordial life-emerging scenario.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbier, B., Chabin, A., Chaput, D. & Brack, A. (1998). Planet. Space Sci. 46, 391398.CrossRefGoogle Scholar
Barbier, B., Henin, O., Boillot, F., Chabin, A., Chaput, D. & Brack, A. (2002). Planet. Space Sci. 50, 353359.CrossRefGoogle Scholar
Boillot, F., Chabin, A., Buré, C., Venet, M., Belsky, A., Bertrand-Urbaniak, M., Delmas, A., Brack, A. & Barbier, B. (2002). Origins Life Evol. Biosph. 32, 359385.CrossRefGoogle Scholar
Cecchi-Pestellini, C., Scappini, F., Saija, R., Iati, M.A., Giusto, A., Aiello, S., Borghese, F. & Denti, F. (2004). Int. J. Astrobiol. 3(4), 287293.CrossRefGoogle Scholar
Ciaravella, A., Scappini, F., Franchi, M., Cecchi-Pestellini, C., Barbera, M., Candia, R., Gallori, E. & Micela, G. (2004). Int. J. Astrobiol. 3(1), 3135.CrossRefGoogle Scholar
Chyba, C.F. (2005). Science 308, 962963.CrossRefGoogle ScholarPubMed
Creed, D. (1984). Photochem. Photobiol. 39, 563575.CrossRefGoogle Scholar
Duley, W.W. & Williams, D.A. (1984). Interstellar Chemistry. Academic Press, London.Google Scholar
Ehrenfreund, P., Bernstein, M.P., Dworkin, J.P., Sandford, S.A. & Allamandola, L.J. (2001). Astrophys. J. 550, L95L99.CrossRefGoogle Scholar
Jin, F., Leitlich, J. & von Sonntag, C. (1995). J. Photochem. Photobiol. A: Chemistry 92, 147153.CrossRefGoogle Scholar
Lammer, H., Ribas, I., Griessmeier, J.M., Penz, J., Hansmeier, A. & Biernat, H.K. (2004). Harvard Obs. Bull. 23, 139155.Google Scholar
Miller, S.L. (1953). Science 117, 528529.CrossRefGoogle Scholar
Muñoz, Caro G.M., Melerhenric, U.J., Shutte, W.A., Barbier, B., Arcones, Segovia A., Rosenbauer, H., Tiemann, W.H.-P., Brack, A. & Greenberg, J.M. (2002). Nature 416, 403406.CrossRefGoogle Scholar
Ponnanperuma, C. (1972). The Origins of Life. Thames and Hudson Ltd., London.Google Scholar
Sackmann, I.-J. & Boothroyd, A.I. (2003). Astrophys. J. 583, 10241039.CrossRefGoogle Scholar
Scappini, F., Casadei, F., Zamboni, R., Franchi, M., Gallori, E. & Monti, S. (2004). Int. J. Astrobiol. 3(1), 1719.CrossRefGoogle Scholar
Scappini, et al. (2007). Int. J. Astrobiol. (sent for publication).Google Scholar
Tehrany, M.G., Lammer, H., Selsis, F., Ribas, I., Guinan, E.F. & Hansmeier, A. (2002). The particle and radiation environment of the early sun. In Proc. of the 10th European Solar Physics Meeting, ESA SP-506, ed. Wilson, A.. Noordwijk: ESA Publication Division, pp. 209212.Google Scholar
Walker, J.C.G. (1977). Evolution of the Atmosphere. Macmillan, New York.Google Scholar
Zeilik, M. & Gregory, S.A. (1998). Astronomy and Astrophysics. Sounders College Publishing, New York.Google Scholar