Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T15:08:04.509Z Has data issue: false hasContentIssue false

Characterization of exogenic fulgurites from an archaeological site in Tiedra, Valladolid, Spain

Published online by Cambridge University Press:  17 May 2019

Pablo Martín-Ramos*
Affiliation:
EPS, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), University of Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain CFisUC, Physics Department, University of Coimbra, Rua Larga, P-3004-516, Coimbra, Portugal
Francisco PSC Gil
Affiliation:
CFisUC, Physics Department, University of Coimbra, Rua Larga, P-3004-516, Coimbra, Portugal
Francisco J Martín-Gil
Affiliation:
EPS, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), University of Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain
Jesús Martín-Gil
Affiliation:
Agriculture and Forestry Engineering Department, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
*
Author for correspondence: Pablo Martín-Ramos, Email: pmr@unizar.es

Abstract

Studies on type-V fulgurites are very sparse in the literature. This work reports on the characterization of natural exogenic fulgurites found at the archaeological site of Cerro de la Ermita (Tiedra, Valladolid, Spain), which was firstly a Celtiberian and then a Roman locum sacrum. Data from X-ray powder diffraction, X-ray fluorescence spectroscopy, Fourier-transform infrared spectroscopy and Raman spectroscopy suggest that the fulgurites consist of naquite, piroxenes, iron oxides, shocked quartz and neo-formed cristobalite.

Type
Rapid Communication
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrunhosa, MJ, Gonçalves, AA & da Cruz, DJ (1995) Occorrência de rochas vitrificadas no dólmen do “Picoto do Vasco” (Vila Nova de Paiva, Viseu). Estudios Pré-Históricos 3, 167–85.Google Scholar
Bokobza, L, Bruneel, J-L & Couzi, M (2015) Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C 1, 7794.Google Scholar
Brusentsova, TN, Peale, RE, Maukonen, D, Harlow, GE, Boesenberg, JS & Ebel, D (2010) Far infrared spectroscopy of carbonate minerals. American Mineralogist 95, 1515–22.CrossRefGoogle Scholar
Carter, EA, Hargreaves, MD, Kee, TP, Pasek, MA & Edwards, HGM (2010a) A Raman spectroscopic study of a fulgurite. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, 3087–97.CrossRefGoogle ScholarPubMed
Carter, EA, Pasek, MA, Smith, T, Kee, TP, Hines, P & Edwards, HGM (2010b) Rapid Raman mapping of a fulgurite. Analytical and Bioanalytical Chemistry 397, 2647–58.CrossRefGoogle ScholarPubMed
Cook, M, Watson, F & Cook, G (2014) Burning questions: new insights into vitrified forts. In 17th Iron Age Research Student Symposium (eds Erskine, GJR, Jacobsson, P, Miller, P and Stetkiewicz, S), pp. 149–56. Edinburgh: Archaeopress Publishing Ltd.Google Scholar
Daly, TK, Buseck, PR, Williams, P & Lewis, CF (1993) Fullerenes from a fulgurite. Science 259, 1599–601.CrossRefGoogle ScholarPubMed
Elmi, C, Chen, J, Goldsby, D & Gieré, R (2017) Mineralogical and compositional features of rock fulgurites: a record of lightning effects on granite. American Mineralogist 102, 1470–81.CrossRefGoogle Scholar
Essene, EJ & Fisher, DC (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science 234, 189–93.CrossRefGoogle ScholarPubMed
Foster, RD & Walker, RF (1984) Quantitative determination of crystalline silica in respirable-size dust samples by infrared spectrophotometry. The Analyst 109, 1117–27.CrossRefGoogle ScholarPubMed
Frank, O, Jehlička, J & Hamplová, V. (2006) Search for fullerenes in geological carbonaceous samples altered by experimental lightning. Fullerenes, Nanotubes and Carbon Nanostructures 11, 257–67.CrossRefGoogle Scholar
Gailliot, MP (2016) Petrified lightning. Rocks & Minerals 55, 1317.CrossRefGoogle Scholar
Garcia-Guinea, J, Furio, M, Fernandez-Hernan, M, Bustillo, MA, Crespo-Feo, E, Correcher, V, Sanchez-Muñoz, L, Matesanz, E & Gucsik, A (2009) The quartzofeldspathic fulgurite of Bustaviejo (Madrid): cathodoluminescence and Raman emission. In AIP Conference Proceedings 1163, Mainz, Germany, pp. 128–34.CrossRefGoogle Scholar
Heymann, D (1998) Search for C60 fullerene in char produced on a Norway spruce by lightning. Fullerene Science and Technology 6, 1079–86.CrossRefGoogle Scholar
Jeoung, SC, Kim, D, Kim, S & Kim, SK (1995) Triplet state Raman spectra of C60 and C70. Chemical Physics Letters 241, 528–32.CrossRefGoogle Scholar
Jiménez Fuentes, E & García Marcos, JM (1980) Explicación de la hoja nº 370: Toro (Zamora y Valladolid). Madrid: Instituto Geológico y Minero de España.Google Scholar
Kassi, AM, Kasi, AK, Friis, H & Kakar, DM (2013) Occurrences of rock-fulgurites associated with steel pylons of the overhead electric transmission line at Tor Zawar, Ziarat District and Jang Tor Ghar, Muslim Bagh, Pakistan. Turkish Journal of Earth Sciences 22, 1010–19.CrossRefGoogle Scholar
Lefrant, S, Faulques, E, Godon, C, Buisson, JP, Auban-Senzier, P, Jerome, D, Fabre, C, Rassat, A, Zahab, A, Lambert, JM & Bernier, P (1993) Isotope effects in the Raman spectra of 13C enriched C60. Synthetic Metals 56, 3044–9.CrossRefGoogle Scholar
Macrobius, AAT & Kaster, RA (2011) Saturnalia. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Martin, Crespo T, Lozano, Fernandez RP & Gonzalez, Laguna R (2009) The fulgurite of Torre de Moncorvo (Portugal): description and analysis of the glass. European Journal of Mineralogy 21(4), 783–94.CrossRefGoogle Scholar
Martín-Gil, J & Martin-Gil, FJ (2001) ¿Un fanum romano en Tiedra? Investigación y Ciencia 239, 29. https://www.researchgate.net/publication/260426668_Hispania_Romana_Un_fanum_en_TiedraGoogle Scholar
Martinez-Ramirez, S, Diaz, L, Camacho, JJ & Viehland, D (2013) CW CO2-laser-induced formation of fulgurite on lime-pozzolan mortar. Journal of the American Ceramic Society 96, 2824–30.CrossRefGoogle Scholar
Mohling, JW (2004) Exogenic fulgurites from Elko County, Nevada: a new class of fulgurite associated with large soil-gravel fulgurite tubes. Rocks & Minerals 79, 334–40.CrossRefGoogle Scholar
Nunn, S & Nishikida, K (2008) Advanced ATR Correction Algorithm – Application Note 50581. Madison, WI: ThermoScientific.Google Scholar
Parthasarathy, G, Kunwar, AC & Srinivasan, R (2001) Occurrence of moganite-rich chalcedony in Deccan flood basalts, Killari, Maharashtra, India. European Journal of Mineralogy 13, 127–34.CrossRefGoogle Scholar
Pasek, MA, Block, K & Pasek, V (2012) Fulgurite morphology: a classification scheme and clues to formation. Contributions to Mineralogy and Petrology 164, 477–92.CrossRefGoogle Scholar
Pasek, MA & Pasek, VD (2017) The forensics of fulgurite formation. Mineralogy and Petrology 112, 185–98.CrossRefGoogle Scholar
Prawer, S, Nugent, KW & Jamieson, DN (1998) The Raman spectrum of amorphous diamond. Diamond and Related Materials 7, 106–10.CrossRefGoogle Scholar
Romano, DG & Voyatzis, ME (2010) Excavating at the birthplace of Zeus: the Mt. Lykaion Excavation and Survey Project. Expedition: The Magazine of the University of Pennsylvania 52, 921.Google Scholar
Saikia, BJ, Parthasarathy, G, Sarmah, NC & Baruah, GD (2008) Fourier-transform infrared spectroscopic characterization of naturally occurring glassy fulgurites. Bulletin of Materials Science 31, 155–8.CrossRefGoogle Scholar
Sanz-Mínguez, C & Sobrino-González, M (2013) Tiedra: el cerro de la Ermita. Vaccea 2012 (no. 6), 26–31.Google Scholar
Sheffer, A, Melosh, H, Jarnot, B & Lauretta, D (2003) Reduction of silicates at high temperature: fulgurites and thermodynamic modeling. In Lunar and Planetary Science Conference, League City, Texas, pp. 12.Google Scholar
Temple, PA & Hathaway, CE (1973) Multiphonon Raman spectrum of silicon. Physical Review B 7, 3685–97.CrossRefGoogle Scholar
Walter, M (2011) An exogenic fulgurite occurrence in Oswego, Oswego County, New York. Rocks & Minerals 86, 264–70.CrossRefGoogle Scholar