Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T03:42:45.306Z Has data issue: false hasContentIssue false

Caledonian terrane amalgamation of Svalbard: detrital zircon provenance of Mesoproterozoic to Carboniferous strata from Oscar II Land, western Spitsbergen

Published online by Cambridge University Press:  04 June 2013

DETA GASSER*
Affiliation:
Department of Geosciences, Postbox 1047, Blindern, 0316 Oslo, Norway Norwegian Geological Survey, Postboks 6315 Sluppen, 7491 Trondheim, Norway
ARILD ANDRESEN
Affiliation:
Department of Geosciences, Postbox 1047, Blindern, 0316 Oslo, Norway
*
Author for correspondence: deta.gasser@ngu.no

Abstract

The tectonic origin of pre-Devonian rocks of Svalbard has long been a matter of debate. In particular, the origin and assemblage of pre-Devonian rocks of western Spitsbergen, including a blueschist-eclogite complex in Oscar II Land, are enigmatic. We present detrital zircon U–Pb LA-ICP-MS data from six Mesoproterozoic to Carboniferous samples and one U–Pb TIMS zircon age from an orthogneiss from Oscar II Land in order to discuss tectonic models for this region. Variable proportions of Palaeo- to Neoproterozoic detritus dominate the metasedimentary samples. The orthogneiss has an intrusion age of 927 ± 3 Ma. Comparison with detrital zircon age spectra from other units of similar depositional age within the North Atlantic region indicates that Oscar II Land experienced the following tectonic history: (1) the latest Mesoproterozoic sequence was part of a successor basin which originated close to the Grenvillian–Sveconorwegian orogen, and which was intruded by c. 980–920 Ma plutons; (2) the Neoproterozoic sediments were deposited in a large-scale basin which stretched along the Baltoscandian margin; (3) the eclogite-blueschist complex and the overlying Ordovician–Silurian sediments probably formed to the north of the Grampian/Taconian arc; (4) strike-slip movements assembled the western coast of Spitsbergen outside of, and prior to, the main Scandian collision; and (5) the remaining parts of Svalbard were assembled by strike-slip movements during the Devonian. Our study confirms previous models of complex Caledonian terrane amalgamation with contrasting tectonic histories for the different pre-Devonian terranes of Svalbard and particularly highlights the non-Laurentian origin of Oscar II Land.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agard, P., Labrousse, L., Elvevold, S. & Lepvrier, C. 2005. Discovery of Paleozoic Fe-Mg carpholite in Motalafjella, Svalbard Caledonides: a milestone for subduction-zone gradients. Geology 33, 761–4.CrossRefGoogle Scholar
Agyei-Dwarko, N., Augland, L. E. & Andresen, A. 2012. The Heggmovatn supracrustals, North Norway: a late Mesoproterozoic to early Neoproterozoic (1050–930 Ma) terrane of Laurentian origin in the Scandinavian Caledonides. Precambrian Research 212–213, 245–62.CrossRefGoogle Scholar
Anfinson, O. A., Leier, A. L., Embry, A. F. & Dewing, K. 2012. Detrital zircon geochronology and provenance of the Neoproterozoic to Late Devonian Franklinian Basin, Canada. Geological Society of America Bulletin 124, 415–30.CrossRefGoogle Scholar
Armstrong, H. A., Nakrem, H. A. & Ohta, Y. 1986. Ordovician conodonts from the Bulltinden Formation, Motalafjella, central-western Spitsbergen. Polar Research 4, 1723.Google Scholar
Augland, L. E., Andresen, A. & Corfu, F. 2010. Age, structural setting, and exhumation of the Liverpool Land eclogite terrane, East Greenland Caledonides. Lithosphere 2, 267–86.CrossRefGoogle Scholar
Augland, L. E., Andresen, A. & Corfu, F. 2011. Terrane transfer during the Caledonian orogeny: Baltican affinities of the Liverpool Land Eclogite Terrane in East Greenland. Journal of the Geological Society, London 168, 1526.Google Scholar
Balashov, J. A., Peucat, J. J., Tebenkov, A. M., Ohta, Y., Larionov, A. N., Sirotkin, A. N. & Bjørnerud, M. 1996. Rb-Sr whole rock and U–Pb zircon datings of the granitic-gabbroic rocks from the Skålfjellet Subgroup, southwest Spitsbergen. Polar Research 15, 167–81.Google Scholar
Balashov, J. A., Tebenkov, A. M., Ohta, Y., Larionov, A. N., Sirotkin, A. N., Gannibal, L. F. & Ryungenen, G. I. 1995. Grenvillian U–Pb zircon ages of quartz porphyry and rhyolite clasts in a metaconglomerate at Vimsodden, southwestern Spitsbergen. Polar Research 14, 291302.Google Scholar
Be'eri-Shlevin, Y., Gee, D., Claesson, S., Ladenberger, A., Majka, J., Kirkland, C., Robinson, P. & Frei, D. 2011. Provenance of Neoproterozoic sediments in the Särv nappes (Middle Allochthon) of the Scandinavian Caledonides: LA-ICP-MS and SIMS U–Pb dating of detrital zircons. Precambrian Research 187, 181200.Google Scholar
Belousova, E. A., Griffin, W. L. & O'Reilly, S. Y. 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modeling: examples from Eastern Australian granitoids. Journal of Petrology 47, 329–53.CrossRefGoogle Scholar
Bergh, S. G., Braathen, A. & Andresen, A. 1997. Interaction of basement-involved and thin-skinned tectonism in the Tertiary fold-thrust belt of central Spitsbergen, Svalbard. American Association of Petroleum Geologists Bulletin 81, 637–61.Google Scholar
Bergh, S. G., Ohta, Y., Andresen, A., Maher, H. D., Braathen, A. & Dallmann, W. K. 2003. Geological Map of Svalbard, 1:100 000 Sheet B8G St Jonsfjorden. Norsk Polarinstitutt Temakart No. 34.Google Scholar
Bernard-Griffiths, J., Peucat, J. J. & Ohta, Y. 1993. Age and nature of protoliths in the Caledonian blueschist-eclogite complex of western Spitsbergen: a combined approach using U–Pb, Sm-Nd and REE whole rock systems. Lithos 30, 8190.Google Scholar
Bingen, B., Belousova, E. A. & Griffin, W. L. 2011. Neoproterozoic recycling of the Sveconorwegian orogenic belt: detrital zircon data from the Sparagmite basins in the Scandinavian Caledonides. Precambrian Research 189, 347–67.Google Scholar
Bingen, B., Griffin, W. L., Torsvik, T. H. & Saeed, A. 2005. Timing of Late Neoproterozoic glaciation on Baltica constrained by detrital zircon geochronology in the Hedmark Group, south-east Norway. Terra Nova 17, 250–8.Google Scholar
Bingen, B. & Solli, A. 2009. Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltica: synopsis for detrital zircon provenance studies. Norwegian Journal of Geology 89, 267–90.Google Scholar
Birkenmajer, K. 1991. The Jarlsbergian unconformity (Proterozoic/Cambrian boundary) and the problem of Varangian tillites in South Spitsbergen. Polish Polar Research 12, 269–78.Google Scholar
Bjørnerud, M. G. 1990. An upper Proterozoic unconformity in northern Wedel Jarlsberg Land, southwest Spitsbergen: lithostratigraphy and tectonic implications. Polar Research 8, 127–39.CrossRefGoogle Scholar
Bjørnerud, M. G. 2010. Stratigraphic record of Neoproterozoic ice sheet collapse: the Kapp Lyell diamictite sequence, SW Spitsbergen, Svalbard. Geological Magazine 147, 380–90.Google Scholar
Bjørnerud, M. G., Craddock, C. & Wills, C. J. 1990. A major late Proterozoic tectonic event in southwestern Spitsbergen. Precambrian Research 48, 157–65.Google Scholar
Bjørnerud, M. G., Decker, P. L. & Craddock, C. 1991. Reconsidering Caledonian deformation in southwest Spitsbergen. Tectonics 10, 171–90.Google Scholar
Braathen, A., Bergh, S. G. & Maher, H. D. 1999. Application of a critical wedge taper model to the Tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard. Geological Society of America Bulletin 111, 1468–85.Google Scholar
Carrapa, B. 2010. Resolving tectonic problems by dating detrital minerals. Geology 38, 191–2.CrossRefGoogle Scholar
Cawood, P. A., Nemchin, A. A., Smith, M. & Loewy, S. 2003. Source of the Dalradian Supergroup constrained by U–Pb dating of detrital zircon and implications for the East Laurentian margin. Journal of the Geological Society, London 160, 231–46.Google Scholar
Cawood, P. A., Nemchin, A. A., Strachan, R. A., Kinny, P. D. & Loewy, S. 2004. Laurentian provenance and an intracratonic tectonic setting for the Moine Supergroup, Scotland, constrained by detrital zircons from the Loch Eil and Glen Urquhart successions. Journal of the Geological Society, London 161, 861–74.CrossRefGoogle Scholar
Cawood, P. A., Nemchin, A. A. & Strachan, R. 2007. Provenance record of Laurentian passive-margin strata in the northern Caledonides: implications for paleodrainage and paleogeography. Geological Society of America Bulletin 119, 9931003.Google Scholar
Cawood, P. A., Nemchin, A. A., Strachan, R., Prave, T. & Krabbendam, M. 2007. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. Journal of the Geological Society, London 164, 257–75.CrossRefGoogle Scholar
Cawood, P. A. & Pisarevsky, S. A. 2006. Was Baltica right-way-up or upside-down in the Neoproterozoic? Journal of the Geological Society, London 163, 753–9.Google Scholar
Cawood, P. A., Strachan, R., Cutts, K., Kinny, P. D., Hand, M. & Pisarevsky, S. 2010. Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic. Geology 38, 99102.CrossRefGoogle Scholar
Clift, P. D., Carter, A., Draut, A. E., Van Long, H., Chew, D. M. & Schouten, H. A. 2009. Detrital U–Pb zircon dating of lower Ordovician syn-arc-continent collision conglomerates in the Irish Caledonides. Tectonophysics 479, 165–74.CrossRefGoogle Scholar
Cocks, L. R. & Torsvik, T. H. 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity. Earth-Science Reviews 72, 3966.CrossRefGoogle Scholar
Cocks, L. R. & Torsvik, T. H. 2011. The Paleozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins. Earth-Science Reviews 106, 151.Google Scholar
Collinson, J. D., Kalsbeek, F., Jespen, H. F., Pedersen, S. A. S. & Upton, B. G. J. 2008. Paleoproterozoic and Mesoproterozoic sedimentary and volcanic successions in the northern parts of the East Greenland Caledonian orogen and its foreland. In The Greenland Caledonides – Evolution of the Northeast Margin of Laurentia (eds Higgins, A. K., Gilotti, J. A. & Smith, M. P.), pp. 7398. Geological Society of America, Memoir no. 202.Google Scholar
Colpron, M. & Nelson, J. L. 2009. A Paleozoic Northwest passage: incursion of Caledonian, Baltican and Siberian terranes into eastern Panthalassa, and the early evolution of the North American Cordillera. In Earth Accretionary Systems in Space and Time (eds Cawood, P. A. & Kröner, A.), pp. 273307. Geological Society of London, Special Publication no. 318.Google Scholar
Corfu, F., Svensen, H., Neumann, E. R., Nakrem, H. A. & Planke, S. 2010. U–Pb and geochemical evidence for a Cryogenian magmatic arc in central Novaya Zemlya, Arctic Russia. Terra Nova 22, 116–24.Google Scholar
Cutts, K. A., Hand, M., Kelsey, D. E., Wade, B., Strachan, R. A., Clark, C. & Netting, A. 2009. Evidence for 930 Ma metamorphism in the Shetland Islands, Scottish Caledonides: implications for Neoproterozoic tectonics in the Laurentia-Baltica sector of Rodinia. Journal of the Geological Society, London 166, 1033–47.Google Scholar
Czerny, J., Majka, J., Gee, D. G., Manecki, A. & Manecki, M. 2010. Torellian Orogeny: evidence of a Late Proterozoic tectonometamorphic event in southwestern Svalbard's Caledonian basement. NGF, Abstracts and Proceedings of the Geological Society of Norway, 35–6.Google Scholar
Dallmann, W. K., Ohta, Y., Elvevold, S. & Blomeier, D. 2002. Bedrock Map of Svalbard and Jan Mayen. Norsk Polarinsitutt Temakart No. 33.Google Scholar
Dallmeyer, R. D., Peucat, J. J., Hirajima, T. & Ohta, Y. 1990. Tectonothermal chronology within a blueschist-eclogite complex, west-central Spitsbergen, Svalbard: evidence from 40Ar/39Ar and Rb-Sr mineral ages. Lithos 24, 291304.CrossRefGoogle Scholar
Dewey, J. F. & Strachan, R. A. 2003. Changing Silurian-Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtension. Journal of the Geological Society, London 160, 219–29.CrossRefGoogle Scholar
Dhuime, B., Bosch, D., Bruguier, O., Caby, R. & Pourtales, S. 2007. Age, provenance and post-deposition metamorphic overprint of detrital zircons from the Nathorst Land group (NE Greenland) – a LA-ICP-MS and SIMS study. Precambrian Research 155, 2446.Google Scholar
Dickinson, W. R., & Gehrels, G. E. 2009. Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth and Planetary Sciences Letters 288, 115–25.Google Scholar
Fedo, C. M., Sircombe, K. N. & Rainbird, R. H. 2003. Detrital zircon analysis of the sedimentary record. In Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.), pp. 277303. Reviews in Mineralogy and Geochemistry vol. 53.Google Scholar
Friend, C. R. L., Strachan, R. A., Kinny, P. D. & Watt, G. R. 2003. Provenance of the Moine Supergroup of NW Scotland: evidence from geochronology of detrital and inherited zircons from (meta)sedimentary rocks, granites and migmatites. Journal of the Geological Society, London 160, 247–57.Google Scholar
Gee, D. G., Fossen, H., Henriksen, N. & Higgins, A. K. 2008. From the Early Paleozoic platforms of Baltica and Laurentia to the Caledonide orogen of Scandinavia and Greenland. Episodes 31, 4451.Google Scholar
Gee, D. G. & Teben'kov, A. M. 2004. Svalbard: a fragment of the Laurentian margin. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V.), pp. 191206. Geological Society of London, Memoirs no. 30.Google Scholar
Gernigon, L. & Brönner, M. 2012. Late Paleozoic architecture and evolution of the southwestern Barents Sea: insights from a new generation of aeromagnetic data. Journal of the Geological Society, London 169, 449–59.Google Scholar
Gilotti, J. A., Nutman, A. P. & Brueckner, H. K. 2004. Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism. Contributions to Mineralogy and Petrology 148, 216–35.Google Scholar
Gromet, L. P. & Gee, D. G. 1998. An evaluation of the age of high-grade metamorphism in the Caledonides of Biskayerhalvøya, NW Svalbard. GFF 120, 199208.Google Scholar
Harland, W. B. 1971. Tectonic transpression in Caledonian Spitsbergen. Geological Magazine 108, 2742.Google Scholar
Harland, W. B. 1985. Caledonide Svalbard. In The Caledonide Orogen – Scandinavia and Related Areas (eds Gee, D. G. & Sturt, B. A.), pp. 9991015. New York: John Wiley & Sons.Google Scholar
Harland, W. B., Anderson, L. M. & Manasrah, D. (eds) 1997. The Geology of Svalbard. Geological Society of London, Memoirs no. 17, 521 pp.Google Scholar
Harland, W. B., Hambrey, M. J. & Waddans, P. 1993. Vendian Geology of Svalbard. Norsk Polarinstitutt Skrifter 193, 150 pp.Google Scholar
Hartz, E. H. & Torsvik, T. H. 2002. Baltica upside down: a new plate tectonic model for Rodinia and the Iapetus Ocean. Geology 30, 255–8.Google Scholar
Hellman, F. J., Gee, D. G., Johansson, Å. & Witt-Nilsson, P. 1997. Single-zircon Pb evaporation geochronology constrains basement-cover relationships in the Lower Hecla Hoek Complex of northern Ny Friesland, Svalbard. Chemical Geology 137, 117–34.Google Scholar
Hellman, F. J., Gee, D. G. & Witt-Nilsson, P. 2001. Late Archean basement in the Bangenhuken Complex of the Nordbreen Nappe, western Ny-Friesland, Svalbard. Polar Research 20, 4959.Google Scholar
Higgins, A. K. & Leslie, A. G. 2008. Architecture and evolution of the East Greenland Caledonides – an introduction. In The Greenland Caledonides – Evolution of the Northeast Margin of Laurentia (eds Higgins, A. K., Gilotti, J. A. & Smith, M. P.), pp. 2954. Geological Society of America, Memoir no. 202.CrossRefGoogle Scholar
Hirajima, T., Banno, S., Hiroi, Y. & Ohta, Y. 1988. Phase petrology of eclogites and related rocks from the Motalafjella high-pressure metamorphic complex in Spitsbergen (Arctic Ocean) and its significance. Lithos 22, 7597.CrossRefGoogle Scholar
Johansson, Å., Gee, D. G., Larionov, A. N., Ohta, Y. & Tebenkov, A. M. 2005. Grenvillian and Caledonian evolution of eastern Svalbard – a tale of two orogenies. Terra Nova 17, 317–25.Google Scholar
Kalsbeek, F., Thrane, K., Nutman, A. P. & Jespen, H. F. 2000. Late Mesoproterozoic to early Neoproterozoic history of the East Greenland Caledonides: evidence for Grenvillian orogenesis? Journal of the Geological Society, London 157, 1215–25.CrossRefGoogle Scholar
Kanat, L. & Morris, A. 1988. A Working Stratigraphy for Central Western Oscar II Land, Spitsbergen. Norsk Polarinstitutt Skrifter 190, 24 pp.Google Scholar
Keppie, J. D., Nance, R. D., Murphy, J. B. & Dostal, J. 2003. Tethyan, Mediterranean, and Pacific analogues for the Neoproterozoic–Paleozoic birth and development of peri-Gondwanan terranes and their transfer to Laurentia and Laurussia. Tectonophysics 365, 195219.Google Scholar
Kirkland, C. L., Bingen, B., Whitehouse, M. J., Beyer, E. & Griffin, W. L. 2011. Neoproterozoic paleogeography in the North Atlantic Region: inferences from the Akkajaure and Seve Nappes of the Scandinavian Caledonides. Precambrian Research 186, 127–46.Google Scholar
Kirkland, C. L., Daly, S. J. & Whitehouse, M. J. 2006. Granitic magmatism of Grenvillian and late Neoproterozoic age in Finnmark, Arctic Norway – constraining pre-Scandian deformation in the Kalak nappe complex. Precambrian Research 145, 2452.Google Scholar
Kirkland, C. L., Daly, S. J. & Whitehouse, M. J. 2007. Provenance and terrane evolution of the Kalak Nappe Complex, Norwegian Caledonides: implications for Neoproterozoic paleogeography and tectonics. Journal of Geology 115, 2141.Google Scholar
Kirkland, C. L., Pease, V., Whitehouse, M. J. & Ineson, J. R. 2009. Provenance record from Mesoproterozoic-Cambrian sediments from Peary Land, North Greenland: implications for the ice-covered Greenland Shield and Laurentian paleogeography. Precambrian Research 170, 4360.Google Scholar
Kirkland, C. L., Strachan, R. A. & Prave, A. R. 2008. Detrital zircon provenance of the Moine Supergroup, Scotland: contrasts and comparisons with other Neoproterozoic successions within the circum-North Atlantic region. Precambrian Research 163, 332–50.Google Scholar
Krogh, T. E. 1973. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination. Geochimica et Cosmochimica Acta 37, 485–94.Google Scholar
Kuznetsov, N. R., Natapov, L. M., Belousova, E. A., O'Reilly, , & Griffin, W. L. 2010. Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE Margin of the East European Craton: implications for plate tectonic models. Gondwana Research 17, 583601.Google Scholar
Labrousse, L., Elvevold, S., Lepvrier, C. & Agard, P. 2008. Structural analysis of high-pressure metamorphic rocks of Svalbard: reconstructing the early stages of the Caledonian orogeny. Tectonics 27, doi: 10.1029/2007TC002249.Google Scholar
Larionov, A. N., Andreichev, V. A. & Gee, D. G. 2004. The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V.), pp. 6974. Geological Society of London, Memoirs no. 30.Google Scholar
Larionov, A. N., Tebenkov, A. M., Gee, D. G., Czerny, J. & Majka, J. 2010. Recognition of Precambrian tectonostratigraphy in Wedel‐Jarlsberg Land, Southwestern Spitsbergen. NGF, Abstracts and Proceedings of the Geological Society of Norway, 106.Google Scholar
Leslie, A. G. & Nutman, A. P. 2003. Evidence for Neoproterozoic orogenesis and early high temperature Scandian deformation events in the southern East Greenland Caledonides. Geological Magazine 140, 309–33.Google Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzismons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.Google Scholar
Lorenz, H., Gee, D. G., Larionov, A. N. & Majka, J. 2012. The Grenville-Sveconorwegian orogen in the high Arctic. Geological Magazine 149, 875–91.Google Scholar
Lorenz, H., Pystin, A. M., Olovyanishnikov, V. G. & Gee, D. G. 2004. Neoproterozoic high-grade metamorphism of the Kanin Peninsula, Timanide Orogen, northern Russia. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V.), pp. 5968. Geological Society of London, Memoirs no. 30.Google Scholar
Majka, J., Czerny, J., Mazur, S., Holm, D. K. & Manecki, M. 2010. Neoproterozoic metamorphic evolution of the Isbjørnhamna Group rocks from south-western Svalbard. Polar Research 29, 250–64.Google Scholar
Majka, J., Larionov, A. N., Gee, D. G., Czerny, J. & Prsek, J. 2012. Neoproterozoic pegmatite from Skoddefjellet, Wedel Jarlsberg Land, Spitsbergen: additional evidence for c. 640 Ma tectonothermal event in the Caledonides of Svalbard. Polish Polar Research 33, 117.Google Scholar
Majka, J., Mazur, S., Manecki, M., Czerny, J. & Holm, D. K. 2008. Late Neoproterozoic amphibolite-facies metamorphism of a pre-Caledonian basement block in southwest Wedel Jarlsberg Land, Spitsbergen: new evidence from U-Th-Pb dating of monazite. Geological Magazine 145, 822–30.Google Scholar
Manecki, M., Holm, D. K., Czerny, J. & Lux, D. 1998. Thermochronological evidence for Late Proterozoic (Vendian) cooling in southwest Wedel Jarlsberg Land, Spitsbergen. Geological Magazine 135, 63–9.Google Scholar
Mattinson, J. M. 2005. Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology 220, 4766.CrossRefGoogle Scholar
Mazur, S., Czerny, J., Majka, J., Manecki, M., Holm, D., Smyrak, A. & Wypych, A. 2009. A strike-slip terrane boundary in Wedel Jarlsberg Land, Svalbard, and its bearing on correlations of SW Spitsbergen with the Pearya terrane and Timanide belt. Journal of the Geological Society, London 166, 529–44.Google Scholar
McConnell, B., Riggs, N. & Crowley, Q. G. 2009. Detrital zircon provenance and Ordovician terrane amalgamation, western Ireland. Journal of the Geological Society, London 166, 473–84.Google Scholar
McKerrow, W. S., Niocaill, C. M. & Dewey, J. F. 2000. The Caledonian orogeny redefined. Journal of the Geological Society, London 157, 1149–54.Google Scholar
Myhre, P. I., Corfu, F. & Andresen, A. 2009. Caledonian anatexis of Grenvillian crust: a U/Pb study of Albert I Land, NW Svalbard. Norwegian Journal of Geology 89, 173–91.Google Scholar
Nystuen, J. P., Andresen, A., Kumpulainen, R. A. & Siedlecka, A. 2008. Neoproterozoic basin evolution in Fennoscandia, East Greenland and Svalbard. Episodes 31, 3543.Google Scholar
Ohta, Y. 1985. Geochemistry of Precambrian basic igneous rocks between St. Jonsfjorden and Isfjorden, central western Spitsbergen, Svalbard. Polar Research 3, 4967.Google Scholar
Ohta, Y. 1994. Caledonian and Precambrian history in Svalbard: a review, and an implication of escape tectonics. Tectonophysics 231, 183–94.Google Scholar
Ohta, Y., Hiroi, Y. & Hirajima, T. 1983. Additional evidence of pre-Silurian high-pressure metamorphic rocks in Spitsbergen. Polar Research 1, 215–18.Google Scholar
Ohta, Y., Krasilscikov, A. A., Lepvrier, C. & Tebenkov, A. M. 1995. Northern continuation of Caledonian high-pressure metamorphic rocks in central-western Spitsbergen. Polar Research 14, 303–15.Google Scholar
Pease, V. & Scott, R. A. 2009. Crustal affinities in the Arctic Uralides, northern Russia: significance of detrital zircon ages from Neoproterozoic and Palaeozoic sediments in Novaya Zemlya and Taimyr. Journal of the Geological Society, London 166, 517–27.Google Scholar
Petterson, C. H., Pease, V. & Frei, D. 2009. U–Pb zircon provenance of metasedimentary basement of the Northwestern Terrane, Svalbard: implications for the Grenvillian-Sveconorwegian orogeny and development of Rodinia. Precambrian Research 175, 206–20.Google Scholar
Petterson, C. H., Pease, V. & Frei, D. 2010. Detrital zircon U–Pb ages of Silurian-Devonian sediments from NW-Svalbard: a fragment of Avalonia and Laurentia? Journal of the Geological Society, London 167, 1019–32.Google Scholar
Petterson, C. H., Tebenkov, A. M., Larionov, A. N., Andresen, A. & Pease, V. 2009. Timing of migmatization and granite genesis in the Northwestern Terrane of Svalbard, Norway: implications for regional correlations in the Arctic Caledonides. Journal of the Geological Society, London 166, 147–58.Google Scholar
Philipps, E. R., Smith, R. A., Stone, P., Pashley, V. & Horstwood, M. 2009. Zircon age constraints on the provenance of Llandovery to Wenlock sandstones from the Midland Valley terrane of the Scottish Caledonides. Scottish Journal of Geology 45, 131–46.CrossRefGoogle Scholar
Rainbird, R. H., McNicoll, V. G., Theriault, R. J., Heaman, L. M., Abbott, J. G., Long, D. F. G. & Thorkelson, D. J. 1997. Pan-continental river system draining Grenville orogen recorded by U–Pb and Sm-Nd geochronology of Neoproterozoic quartzarenites and mudrocks, Northwestern Canada. Journal of Geology 105, 117.Google Scholar
Rainbird, R. H., Hamilton, M. A. & Young, G. M. 2001. Detrital zircon geochronology and provenance of the Torridonian, NW Scotland. Journal of the Geological Society, London 158, 1527.Google Scholar
Rehnström, E., Corfu, F. & Torsvik, T. 2002. Evidence of a Late Precambrian (637 Ma) deformational event in the Caledonides of northern Sweden. Journal of Geology 110, 591601.Google Scholar
Roberts, D. & Gee, D. G. 1985. An introduction to the structure of the Scandinavian Caledonides. In The Caledonide Orogen – Scandinavia and Related Areas (eds Gee, D. G. & Sturt, B. A.), pp. 5568. Chichester: Wiley.Google Scholar
Roberts, D., Nordgulen, Ø., Melezhik, V. 2007. The Uppermost Allochthon in the Scandinavian Caledonides: from a Laurentian ancestry through Taconian orogeny to Scandian crustal growth on Baltica. In 4-D Framework of Continental Crust (eds Hatcher, R. D., Carlson, M. P., McBride, J. H. & Martínez Catalán, J. R.), pp. 357–77. Geological Society of America, Memoir no. 200.Google Scholar
Rosa, D. R. N., Finch, A. A., Andersen, T. & Inverno, C. M. C. 2009. U–Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt. Contributions to Mineralogy and Petrology 95, 4769.Google Scholar
Scarrow, J. H., Pease, V., Fleutelot, C. & Dushin, V. 2001. The late Neoproterozoic Enganepe ophiolite, Polar Urals, Russia: an extension of the Cadomian arc? Precambrian Research 110, 255–75.Google Scholar
Scrutton, C. T., Horsfield, W. T. & Harland, W. B. 1976. Silurian fossils from western Spitsbergen. Geological Magazine 113, 519–23.Google Scholar
Siedlecka, A., Roberts, D., Nystuen, J. P. & Olovyanishnikov, V. G. 2004. Northeastern and northwestern margins of Baltica in Neoproterozoic time: evidence from the Timanian and Caledonian orogens. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V.), pp. 169–90. Geological Society of London, Memoirs no. 30.Google Scholar
Slama, J., Walderhaug, O., Fonneland, H., Kosler, J. & Pedersen, R. 2011. Provenance of Neoproterozoic to upper Cretaceous sedimentary rocks, eastern Greenland: implications for recognizing the sources of sediments in the Norwegian Sea. Sedimentary Geology 238, 254–67.Google Scholar
Smith, M. P. & Rasmussen, J. A. 2008. Cambrian-Silurian development of the Laurentian margin of the Iapetus Ocean in Greenland and related areas. In The Greenland Caledonides – Evolution of the Northeast Margin of Laurentia (eds Higgins, A. K., Gilotti, J. A. & Smith, M. P.), pp. 137–67. Geological Society of America, Memoir no. 202.Google Scholar
Soper, N. J., Strachan, R. A., Holdsworth, R. E., Gayer, R. A. & Greiling, R. O. 1992. Sinistral transpression and the Silurian closure of Iapetus. Journal of the Geological Society, London 149, 871–80.Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on Geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Strachan, R. A., Nutman, A. P. & Friderichsen, J. D. 1995. SHRIMP U–Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. Journal of the Geological Society, London 152, 779–84.Google Scholar
Sønderholm, M., Frederiksen, K. S., Smith, M. P. & Tirsgaard, H. 2008. Neoproterozoic sedimentary basins with glacigenic deposits of the East Greenland Caledonides. In The Greenland Caledonides – Evolution of the Northeast Margin of Laurentia (eds Higgins, A. K., Gilotti, J. A. & Smith, M. P.), pp. 99136. Geological Society of America, Memoir no. 202.Google Scholar
Torsvik, T. H., Smethurst, M. A., Meert, J. G., Van der Voo, R., McKerrow, W. S., Brasier, M. D., Sturt, B. A. & Walderhaug, H. J. 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic – a tale of Baltica and Laurentia. Earth-Science Reviews 40, 229–58.CrossRefGoogle Scholar
Trettin, H. P. 1987. Pearya: a composite terrane with Caledonian affinities in northern Ellesmere Island. Canadian Journal of Earth Sciences 24, 224–45.Google Scholar
Trettin, H. P. 1991. The Proterozoic to late Silurian record of Pearya. In Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland (ed. Trettin, H. P.), pp. 241–59. Geology of North America, Vol. E. Boulder, Colorado: Geological Society of America.Google Scholar
Waldron, J. W. F., Floyd, J. D., Simonetti, A. & Heaman, L. M. 2008. Ancient Laurentian detrital zircon in the closing Iapetus Ocean, Southern Uplands terrane, Scotland. Geology 36, 527–30.Google Scholar
Watt, G. R., Kinny, P. D. & Friderichsen, J. D. 2000. U–Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides. Journal of the Geological Society, London 157, 1031–48.Google Scholar
Watt, G. R. & Thrane, K. 2001. Early Neoproterozoic events in East Greenland. Precambrian Research 110, 165–84.Google Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19, 123.Google Scholar
Supplementary material: File

Gasser Supplementary Material

Appendix

Download Gasser Supplementary Material(File)
File 252.4 KB
Supplementary material: File

Gasser Supplementary Material

Appendix

Download Gasser Supplementary Material(File)
File 122.4 KB
Supplementary material: File

Gasser Supplementary Material

Appendix

Download Gasser Supplementary Material(File)
File 37.9 KB