Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:35:53.370Z Has data issue: false hasContentIssue false

Upper Katian (Ordovician) bentonites in the East Baltic, Scandinavia and Scotland: geochemical correlation and volcanic source interpretation

Published online by Cambridge University Press:  07 October 2014

TARMO KIIPLI*
Affiliation:
Institute of Geology, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn, Estonia
PETER DAHLQVIST
Affiliation:
Geological Survey of Sweden, Killiansgatan 10, 223 50 Lund, Sweden
TOIVO KALLASTE
Affiliation:
Institute of Geology, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn, Estonia
ENLI KIIPLI
Affiliation:
Institute of Geology, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn, Estonia
JAAK NÕLVAK
Affiliation:
Institute of Geology, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn, Estonia
*
Author for correspondence: tarmo.kiipli@ttu.ee

Abstract

Altered volcanic ash interbeds (bentonites) in the upper Katian of Baltoscandia indicate significant volcanic activity in neighbouring tectonically active areas. Katian bentonites in the East Baltic can be reliably correlated using sanidine phenocryst composition. Ratios of immobile trace elements TiO2, Nb, Zr and Th to Al2O3 enable extension of the correlations to Scandinavia, where late diagenetic alterations could have caused recrystallization of sanidine phenocrysts. At least seven volcanic eruptions were recognized in Baltoscandian sections. Several bentonites found in deep-sea sediments are absent in shallow-sea sediments, indicating extensive breaks in sedimentation and erosion during late Katian and Hirnantian times. The areal distribution pattern of Katian bentonites in Baltoscandia indicates a volcanic source from the north or northwest (present-day orientation) from the margins of the Iapetus Palaeo-Ocean. Signatures of ultra-high-pressure metamorphism in the Seve Nappe (Central Sweden) and intrusions in the Helgeland Nappe Complex in Central Norway have been proposed as potential sources of the magmas that generated the volcanic ashes deposited in the East Baltic in Katian times. Geochemical similarities between Baltoscandian and Dob's Linn bentonites from southern Scotland suggest a common volcanic source in Katian times.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, C. G., Frost, C., Yoshinobu, A. S., McArthur, K., Barnes, M. A., Allen, C. M., Nordgulen, Ø. & Prestvik, T. 2007. Timing of sedimentation, metamorphism, and plutonism in the Helgeland Nappe Complex, north-central Norwegian Caledonides. Geosphere 3, 683703.CrossRefGoogle Scholar
Barnes, C. G., Yoshinobu, A. S., Prestvik, T., Nordgulen, Ø., Karlsson, H. R. & Sundvoll, B. 2002. Mafic magma intraplating: anatexis and hybridization in arc crust, Bindal Batholith, Norway. Journal of Petrology 43, 2171–90.CrossRefGoogle Scholar
Batchelor, R. A. In press. Metabentonites from the Sandbian Stage (Upper Ordovician) in Scotland – a geochemical comparison with their equivalents in Baltoscandia. Scottish Journal of Geology.Google Scholar
Batchelor, R. A. & Evans, J. 2000. Use of strontium isotope ratios and rare earth elements in apatite microphenocrysts for characterization and correlation of Silurian metabentonites: a Scandinavian case study. Norsk Geologisk Tidsskrift 80, 38.CrossRefGoogle Scholar
Batchelor, R. A. & Weir, J. A. 1988. Metabentonite geochemistry: magmatic cycles and graptolite extinctions at Dob's Linn, southern Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 1941.CrossRefGoogle Scholar
Batchelor, R. A., Weir, J. A. & Spjeldnaes, N. 1995. Geochemistry of Telychian metabentonites from Vik, Ringerike District, Oslo Region. Norsk Geologisk Tidsskrift 5, 219–28.Google Scholar
Bergström, S. M. 1980. Conodonts as paleotemperature tools in Ordovician rocks of the Caledonides and adjacent areas in Scandinavia and the British Isles. Geologiska Föreningens Förhandlingar 102, 377–92.CrossRefGoogle Scholar
Bergström, S. M., Eriksson, M. E., Young, S. A., Ahlberg, P. & Schmitz, B. 2014. Hirnantian (latest Ordovician) δ13C chemostratigraphy in southern Sweden and globally: a refined integration with the graptolite and conodont zone successions, GFF 136, 355–86.CrossRefGoogle Scholar
Bergström, S. M., Huff, W. D., Kolata, D. R. & Bauert, H. 1995. Nomenclature, stratigraphy, chemical fingerprinting and areal distribution of some Middle Ordovician K-bentonites in Baltoscandia. Geologiska Föreningens Förhandlingar 117, 113.Google Scholar
Bergström, S. M., Huff, W. D., Koren, T., Larsson, K., Ahlberg, P. & Kolata, D. R. 1999. The 1997 core drilling through Ordovician and Silurian strata at Röstånga, S. Sweden: preliminary stratigraphic assessment and regional comparison. GFF 121, 127–35.CrossRefGoogle Scholar
Bergström, S. M., Toprak, F. Ö., Huff, W. D. & Mundil, R. 2008. Implications of a new, biostratigraphically well-controlled, radio-isotopic age for the lower Telychian Stage of the Llandovery Series (Lower Silurian, Sweden). Episodes 31, 309–14.CrossRefGoogle Scholar
Brenchley, P. J., Carden, G. A., Hints, L., Kaljo, D., Marshall, J. D., Martma, T., Meidla, T. & Nõlvak, J. 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America Bulletin 115, 89104.2.0.CO;2>CrossRefGoogle Scholar
Brenchley, P. J., Carden, G. A. E. & Marshall, J. D. 1995. Environmental change associated with the “first strike” of the late Ordovician mass extinction. Geology 22, 295–8.2.3.CO;2>CrossRefGoogle Scholar
Brenchley, P. J., Marshall, J. D., Hints, L. & Nõlvak, J. 1997. New isotopic data solving the old biostratigraphic problem: the age of the upper Ordovician brachiopod Holorhyncus giganteus . Journal of the Geological Society, London 154, 335–42.CrossRefGoogle Scholar
Brueckner, H. K., Roermund, H. L. M. & Pearson, N. J. 2004. An Archean(?) to Paleozoic evolution for a garnet peridotite lens with sub-Baltic shield affinity within the Seve Nappe Complex of Jämtland, Sweden, Central Scandinavian Caledonides. Journal of Petrology 45, 415–37.CrossRefGoogle Scholar
Cherns, L. & Karis, L. 1995. Late Ordovician–Early Silurian transgressive sedimentation in the Jämtland basin, central Swedish Caledonides. GFF 117, 2330.CrossRefGoogle Scholar
Cramer, B. D., Condon, D. J., Söderlund, U., Marshall, C., Worton, G. J., Thomas, A. T., Calner, M., Ray, D. C., Perrier, V., Boomer, I., Patchett, P. J. & Jeppsson, L. 2012. U-Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the “Big Crisis”. Geological Society of America Bulletin 124, 1841–57.CrossRefGoogle Scholar
Dahlqvist, P. 2005. Late Ordovician – Early Silurian Facies Development and Stratigraphy of Jämtland, Central Sweden. Litholund Theses 6. Department of Geology, Lund University, Sweden.Google Scholar
Dahlqvist, P., Harper, D. A. T. & Wickström, L. 2010. Late Ordovician shelly faunas from Jämtland, palaeocomunity development along the margin of the Swedish Caledonides. Bulletin of Geosciences 85, 505–12.CrossRefGoogle Scholar
Emerson, N. R., Simo, J. A., Byers, C. W. & Fournelle, J. 2004. Correlation of (Ordovician, Mohawkian) K-bentonites in the upper Mississippi valley using apatite chemistry: implications for stratigraphic interpretation of the mixed carbonate-siliciclastic Decorah Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 215–33.CrossRefGoogle Scholar
Gee, D. G., Juhlin, C., Pascal, C. & Robinson, P. 2010. Collisional orogeny in the Scandinavian Caledonides (COSC). GFF 132, 2944.CrossRefGoogle Scholar
Glimberg, C. F. 1961. Middle and Upper Ordovician strata at Lindegård in the Fågelsång District, Scania, S. Sweden. GFF 83, 7985.Google Scholar
Govindaraju, K. 1995. 1995 working values with confidence limits for twenty six CRPG, ANRT and IWG-GIT geostandards. Geostandards Newsletter 19, Special Issue, 132.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G. & Hilgen, F. J. 2012. On the geologic time scale. Newsletters on Stratigraphy 45, 171–88.CrossRefGoogle Scholar
Grieg, D. C., Goodlet, G. A., Lumsden, G. I. & Tulloch, W. 2005. British Regional Geology: The South of Scotland. Nottingham: British Geological Survey, 125 pp.Google Scholar
Harper, D., Hammarlund, E. & Rasmussen, C. M. Ö. 2013. End Ordovician extinctions: a coincidence of causes. Gondwana Research 25, 1294–307.CrossRefGoogle Scholar
Harris, M. T., Sheehan, P. M., Ainsaar, L., Hints, L., Männik, P., Nõlvak, J. & Rubel, M. 2004. Upper Ordovician sequences of western Estonia. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 135–48.CrossRefGoogle Scholar
Hints, L., Hints, O., Kaljo, D., Kiipli, T., Männik, P., Nõlvak, J. & Pärnaste, H. 2010. Hirnantian (latest Ordovician) bio- and chemostratigraphy of the Stirnas-18 core, western Latvia. Estonian Journal of Earth Sciences 59, 124.CrossRefGoogle Scholar
Hints, R., Kirsimäe, K., Somelar, P., Kallaste, T. & Kiipli, T. 2006. Chloritization of Late Ordovician K-bentonites from the northern Baltic Palaeobasin – influence from source material or diagenetic environment? Sedimentary Geology 191, 5566.CrossRefGoogle Scholar
Hints, R., Kirsimäe, K., Somelar, P., Kallaste, T. & Kiipli, T. 2008. Multiphase Silurian bentonites in the Baltic palaeobasin. Sedimentary Geology 209, 6979.CrossRefGoogle Scholar
Hints, L., Oraspõld, A. & Nõlvak, J. 2005. The Pirgu Regional Stage (Upper Ordovician) in the East Baltic: lithostratigraphy, biozonation, and correlation. Proceedings of the Estonian Academy of Sciences, Geology 54, 225–59.CrossRefGoogle Scholar
Huff, W. D., Merriman, R. J., Morgan, D. J. & Roberts, B. 1993. Distribution and tectonic setting of Ordovician K-bentonites in the United Kingdom. Geological Magazine 130, 93100.CrossRefGoogle Scholar
Inanli, F. Ö., Huff, W. D. & Bergström, S. M. 2009. The Lower Silurian (Llandovery) Osmundsberg K-bentonite in Baltoscandia and the British Isles: chemical fingerprinting and regional correlation. GFF 131, 269–79.CrossRefGoogle Scholar
Jaanusson, V. 1963. Classification of the Harjuan (Upper Ordovician) rocks of the mainland of Sweden. GFF 85, 110–44.Google Scholar
Jaanusson, V. 1995. Confacies differentiation and upper Middle Ordovician correlation in the Baltoscandian basin. Proceedings of the Estonian Academy of Sciences, Geology 44, 73–86.Google Scholar
Kaljo, D., Hints, L., Hints, O., Männik, P., Martma, T. & Nõlvak, J. 2011. Katian prelude to the Hirnantian (late Ordovician) mass extinction: a Baltic perspective. Geological Journal 46, 464–77.CrossRefGoogle Scholar
Kaljo, D., Nõlvak, J. & Uutela, A. 1996. More about Ordovician microfossil diversity patterns in the Rapla section, Northern Estonia. Proceedings of the Estonian Academy of Sciences, Geology 45, 131–48.Google Scholar
Karis, L. & Strömberg, A. (eds) 1998. Jämtlands östliga fjällberggrund. Beskrivning till berggrundskartan över Jämtlands län. Del 2: Fjälldelen. Sveriges Geologiska Undersökning Ca 53:2, 363 pp. (with English summary).Google Scholar
Kastner, M. 1971. Authigenic feldspars in carbonate rocks. American Mineralogist 56, 1403–42.Google Scholar
Kiipli, T., Batchelor, R. A., Bernal, J. P., Cowing, C., Hagel-Brunnstrom, M., Ingham, M. N., Johnson, D., Kivisilla, J., Knaack, C., Kump, P., Lozano, R., Michiels, D., Orlova, K., Pirrus, E., Rousseau, R. M., Ruzicka, J., Sandstrom, H. & Willis, J. P. 2000. Seven sedimentary rock reference samples from Estonia. Oil Shale 17, 215–23.CrossRefGoogle Scholar
Kiipli, T., Einasto, R., Kallaste, T., Nestor, V., Perens, H. & Siir, S. 2011. Geochemistry and correlation of volcanic ash beds from the Rootsiküla Stage (Wenlock-Ludlow) in the eastern Baltic. Estonian Journal of Earth Sciences 60, 207–19.CrossRefGoogle Scholar
Kiipli, E., Kallaste, T. & Kiipli, T. 2004. Metabentonites of the Pirgu Stage (Ashgill, Upper Ordovician) of the East Baltic. In WOGOGOB-2004, 8th Meeting of the Working Group on the Ordovician Geology of Baltoscandia, May 13–18, Tallinn and Tartu, Estonia, Abstracts and Field Guidebook (eds Hints, O. & Ainsaar, L.), pp. 53–4. Institute of Geology, University of Tartu.Google Scholar
Kiipli, T., Kallaste, T., Kiipli, E. & Radzevičius, S. 2013. Correlation of Silurian bentonites based on the immobile elements in the East Baltic and Scandinavia. GFF 135, 152–61.CrossRefGoogle Scholar
Kiipli, T., Kallaste, T. & Nestor, V. 2010. Composition and correlation of volcanic ash beds of Silurian age from the eastern Baltic. Geological Magazine 147, 895909.CrossRefGoogle Scholar
Kiipli, T., Kallaste, T. & Nestor, V. 2012. Correlation of upper Llandovery – lower Wenlock bentonites in the När (Gotland, Sweden) and Ventspils D3 (Latvia) drill cores: role of volcanic ash clouds and shelf sea currents in determining bentonite areal distribution. Estonian Journal of Earth Sciences 61, 295306.CrossRefGoogle Scholar
Kiipli, T., Kallaste, T., Nestor, V. & Loydell, D. K. 2010. Integrated Telychian (Silurian) K-bentonite chemostratigraphy and biostratigraphy in Estonia and Latvia. Lethaia 43, 3244.CrossRefGoogle Scholar
Kiipli, T., Radzevicius, S. & Kallaste, T. 2014. Silurian bentonites in Lithuania: correlations based on sanidine phenocryst composition and graptolite biozonation – interpretation of volcanic source regions. Estonian Journal of Earth Sciences 63, 1829.CrossRefGoogle Scholar
Kiipli, T., Soesoo, A. & Kallaste, T. 2014. Geochemical evolution of Caledonian volcanism recorded in the sedimentary rocks of the eastern Baltic region. In New Perspectives on the Caledonides of Scandinavia and Related Areas (eds Corfu, F., Gasser, D. & Chew, D. M.), pp. 177192. Geological Society of London, Special Publication no. 390.Google Scholar
Kiipli, T., Soesoo, A., Kallaste, T. & Kiipli, E. 2008. Geochemistry of Telychian (Silurian) K-bentonites in Estonia and Latvia. Journal of Volcanology and Geothermal Research 171, 4558.CrossRefGoogle Scholar
Klonowska, I., Majka, J., Janák, M., Gee, D. G. & Ladenberger, A. 2014. Pressure–temperature evolution of a kyanite–garnet pelitic gneiss from Åreskutan: evidence of ultra-high-pressure metamorphism of the Seve Nappe Complex, west-central Jämtland, Swedish Caledonides. In New Perspectives on the Caledonides of Scandinavia and Related Areas (eds Corfu, F., Gasser, D. & Chew, D. M.), pp. 321336. Geological Society of London, Special Publication no. 390.Google Scholar
Kulling, O. 1933. Bergbyggnaden inom Björkvattnet-Virisen-området i Västerbottensfjällens centrala del. En studie i den kaledoniska bergskedjans geologi. Geologiska Föreningens i Stockholm Förhandlingar 55, 167422.CrossRefGoogle Scholar
Laufeld, S. & Jeppsson, L. 1976. Silicification and bentonites in the Silurian of Gotland. GFF 98, 3144.Google Scholar
Leslie, A. G., Smith, M. & Soper, N. J. 2008. Laurentian margin evolution and the Caledonian orogeny – a template for Scotland and East Greenland. In The Greenland Caledonides; Evolution of the Northeast Margin of Laurentia (eds Higgins, A. K., Gilotti, J. A. & Smith, M. P.), pp. 307–43. Geological Society of America Memoir 202.CrossRefGoogle Scholar
Majka, J., Janák, M., Andersson, B., Klonowska, I., Gee, D. G., Rosen, A. & Kosminska, K. 2014. Pressure–temperature estimates on the Tjeliken eclogite: new insights into the (ultra)-high-pressure evolution of the Seve Nappe Complex in the Scandinavian Caledonides. In New Perspectives on the Caledonides of Scandinavia and Related Areas (eds Corfu, F., Gasser, D. & Chew, D. M.), pp. 369–84. Geological Society of London, Special Publication no. 390.Google Scholar
Merriman, R. J. & Roberts, B. 1990. Metabentonites in the Moffat Shale Group, Southern Uplands of Scotland: geochemical evidence of ensialic marginal basin volcanism. Geological Magazine 127, 259–71.CrossRefGoogle Scholar
Nõlvak, J. & Grahn, Y. 1993. Ordovician chitinozoan zones from Baltoscandia. Review of Palaeobotany and Palynology 79, 245–69.CrossRefGoogle Scholar
Nõlvak, J., Hints, O. & Männik, P. 2006. Ordovician timescale in Estonia: recent developments. Proceedings of the Estonian Academy of Sciences, Geology 55, 95–108.Google Scholar
Oraspõld, A. 1982. Lithological characterization of the boundary beds of the Vormsi and Pirgu stages in central Estonia. Acta Commentationes Universitatis Tartuensis 527, 7590 (in Russian).Google Scholar
Orville, P. M. 1967. Unit cell parameters of the microcline – low-albite and the sanidine high albite solid solution series. American Mineralogist 52, 5586.Google Scholar
Põlma, L. 1967. On the transitional area between the northern and axial lithofacies zones of the East Baltic Ordovician. Proceedings of the Estonian Academy of Sciences – Chemistry Geology 16, 272–75 (in Russian).Google Scholar
Ray, D. C., Collings, A. J., Worton, G. J. & Jones, G. 2011. Upper Wenlock bentonites from Wren's Nest Hill, Dudley: comparisons with prominent bentonites along Wenlock Edge, Shropshire, England. Geological Magazine 148, 670–81.CrossRefGoogle Scholar
Sell, B., Ainsaar, L. & Leslie, S. 2013. Precise timing of the Late Ordovician (Sandbian) super-eruptions and associated environmental, biological, and climatological events. Journal of the Geological Society, London 170, 711–4.CrossRefGoogle Scholar
Schovsbo, N. H., Nielsen, A. T., Klitten, K., Mathiesen, A. & Rasmussen, P. 2011. Shale gas investigations in Denmark: Lower Palaeozoic shales on Bornholm. Geological Survey of Denmark and Greenland Bulletin 23, 914.CrossRefGoogle Scholar
Somelar, P., Kirsimäe, K., Hints, R. & Kirs, J. 2010. Illitization of Early Paleozoic K-bentonites in the Baltic Basin: decoupling of burial- and fluid-driven processes. Clays and Clay Minerals 58, 388–98.CrossRefGoogle Scholar
Stephens, M. B. 1977. Stratigraphy and Relationship Between Folding, Metamorphism and Thrusting in the Tärna-Björkvattnet Area, Northern Swedish Caledonides. Geological Survey of Sweden C 726, 146 pp.Google Scholar
Stephens, M. B. & Gee, D. G. 1985. A tectonic model for the evolution of the eugeoclinal terranes in the central Scandinavian Caledonides. In The Caledonide Orogen: Scandinavia and Related Areas (eds Gee, D. G. & Sturt, B. A.), pp. 953–78. Chichester: John Wiley and Sons.Google Scholar
Underwood, C. J., Crowley, S., Marshall, J. D. & Brenchley, P. J. 1997. High resolution carbon isotope stratigraphy of the basal Silurian stratotype (Dob's Linn, Scotland) and its global correlation. Journal of the Geological Society, London 154, 709–18.CrossRefGoogle Scholar
Williams, L. B., Srodon, J., Huff, W. D., Clauer, N. & Hervig, R. L. 2013. Light element distributions (N, B, Li) in Baltic Basin bentonites record organic sources. Geochimica et Cosmochimica Acta 120, 582–99.CrossRefGoogle Scholar