Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T17:06:58.280Z Has data issue: false hasContentIssue false

Sedimentological, palynological and geochemical studies of the terrestrial Triassic–Jurassic boundary in northwestern Poland

Published online by Cambridge University Press:  12 September 2011

GRZEGORZ PIEŃKOWSKI*
Affiliation:
Polish Geological Institute – National Research Institute, ul. Rakowiecka 4, 00-975 Warszawa, Poland
GRZEGORZ NIEDŹWIEDZKI
Affiliation:
Department of Paleobiology and Evolution, Faculty of Biology, University of Warsaw, ul. S. Banacha 2, PL-02-097 Warszawa, Poland
MARTA WAKSMUNDZKA
Affiliation:
Polish Geological Institute – National Research Institute, ul. Rakowiecka 4, 00-975 Warszawa, Poland
*
Author for correspondence: grzegorz.pienkowski@pgi.gov.pl

Abstract

The Kamień Pomorski IG-1 borehole (Pomerania, NW Poland) yields a profile through the Triassic–Jurassic (T–J) transition in continental deposits. An integrated study of the sedimentology, sequence stratigraphy, palynology, biostratigraphy and geochemistry of these deposits has been carried out on the boundary interval, which represents a time of major environmental change. Two lithological units within the transitional section are distinguished: the Lower–Middle Rhaetian Wielichowo Beds of alluvial plain facies, which shows evidence of a semi-arid climate, and the Upper Rhaetian to Lower Hettangian Zagaje Formation, lying above a marked erosional sequence boundary, composed of mudstone-claystone and sandstone deposited in a fluvial-lacustrine environment. Carbon isotope values obtained from palynomaceral separates, and thus reflecting isotopic changes in atmospheric CO2, show significant fluctuations through the Rhaetian; the most conspicuous negative δ13Corg excursion is correlated with the Rhaetian ‘initial’ excursion and shows two sub-peaks, pointing to short-term carbon-cycle disturbances of lesser magnitude. Above the ‘initial’ negative excursion, there is a positive excursion followed again by more negative values, representing subordinate fluctuation within a positive excursion and is correlated with the T–J boundary. Seventy-two miospore taxa have been determined from the studied T–J transitional section. Two major palynological assemblages have been distinguished: the lower one, typically Rhaetian, named the Cingulizonates rhaeticusLimbosporites lundblandii association, which corresponds to the RhaetipollisRicciisporites (= RhaetipollisLimbosporites) Zone; and the upper one, typically Hettangian, named the Conbaculatisporites mesozoicus– Dictyophyllidites mortoniCerebropollenites thiergartii association (with the age-diagnostic pollen C. thiergartii), which corresponds to the Pinuspollenites–Trachysporites (= Trachysporites–Heliosporites) Zone. The T–J palynofloral turnover occurred in a humid period and is more conspicuous then palynofloral changes observed in Greenland, the Tethyan domain or other parts of NE Europe. The osmium isotope system is studied herein for the first time from T–J continental deposits and shows marked disturbances similar to those measured in marine deposits and attributed to volcanic fallout. Carbon and osmium isotope correlation and coeval increase in polycyclic aromatic hydrocarbon (PAH) content and darkening of miospores confirm that eruptions of the Central Atlantic Magmatic Province (CAMP) contributed to the perturbances in climate and crisis in the terrestrial biosphere. A series of periodical atmospheric loading by CO2, CH4 or alternatively by SO2, sulphate aerosols and toxic compounds is inferred to have caused a series of rapid climatic reversals, directly influencing the ecosystem and causing the Triassic floral crisis. A floral turnover period commenced at the ‘initial’ δ13C excursion, with the onset of CAMP volcanism. Obtained values of initial 187Os/186Os between 2.905 and 4.873 and very low iridium content (about 5 ppt) lend no support to a role for an extraterrestrial impact at the T–J boundary event. The position of the ‘initial’ negative carbon isotope excursion about 12 m below the T–J boundary, position of sequence boundaries (emergence surfaces) and other isotope excursions allow reliable correlation with marine profiles, including St Audrie's Bay (UK), Csövár (Hungary) and the GSSP profile at Kuhjoch (Austria).

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achilles, H. 1981. Die rhaetische und liassische Mikroflora Frankens. Palaeontographica Abteilung B Paläophytologie 179, 186.Google Scholar
Algeo, T. J. & Ingall, E. 2007. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 130–55.CrossRefGoogle Scholar
Barrón, E., Gómez, J. J., Goy, A. & Pieren, A. P. 2006. The Triassic–Jurassic boundary in Asturias (northern Spain): palynological characterisation and facies. Review of Palaeobotany and Palynology 138, 187208.CrossRefGoogle Scholar
Beerling, D. & Berner, R. 2002. Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event. Global Biogeochemical Cycles 16, 113.CrossRefGoogle Scholar
Belcher, C. M., Mander, L., Rein, G., Jervis, F. X., Haworth, M., Hesselbo, S. P., Glasspool, I. J & McElwain, J. C. 2010 a. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience 3, 426–9.CrossRefGoogle Scholar
Belcher, C. M. & McElwain, J. C. 2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science 321, 1197–200.CrossRefGoogle ScholarPubMed
Belcher, C. M., Yearsley, J. M., Hadden, R. M., Mcelwain, J. C. & Rein, G. 2010 b. Baseline intrinsic flammability of Earth's ecosystem estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences 107, 22448–53.CrossRefGoogle ScholarPubMed
Berner, R. A. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 70, 5653–64.CrossRefGoogle Scholar
Birck, J. L., Roy Barman, M. & Capmas, F. 1997. Re-Os isotopic measurements at the femotomole level in nature samples. Geostandards Newsletter 20, 1927.CrossRefGoogle Scholar
Bonis, N. R., Kürschner, W. M. & Krystyn, L. 2009. A detailed palynological study of the Triassic–Jurassic transition in key sections of the Eiberg Basin (Northern Calcareous Alps, Austria). Review of Palaeobotany and Palynology 156, 376400.CrossRefGoogle Scholar
Brauns, C. M. 2001. A rapid, low-blank technique for the extraction of osmium from geological samples. Chemical Geology 176, 379–84.CrossRefGoogle Scholar
Cirilli, S. 2010. Upper Triassic–lowermost Jurassic palynology and palynostratigraphy: a review. In The Triassic Timescale (ed. Lucas, S. G.), pp. 285314. Geological Society of London, Special Publication no. 334.Google Scholar
Cirilli, S., Marzoli, A., Tanner, L., Bertrand, H., Buratti, N., Jourdan, F., Bellieni, G., Kontak, D. & Renne, P. R. 2009. Latest Triassic onset of the Central Atlantic Magmatic Province (CAMP) volcanism in the Fundy Basin (Nova Scotia): new stratigraphic constrains. Earth and Planetary Science Letters 286, 514–25.CrossRefGoogle Scholar
Cohen, A. S. & Coe, A. L. 2002. New geochemical evidence for the onset of volcanism in the Central Atlantic magmatic province and environmental change at the Triassic-Jurassic boundary. Geology 30, 267–70.2.0.CO;2>CrossRefGoogle Scholar
Cohen, A. S. & Coe, A. L. 2007. The impact of the Central Atlantic Magmatic province on climate and on the Sr- and Os-isotope evolution of sea water. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 374–90.CrossRefGoogle Scholar
Cornet, B. & Olsen, P. E. 1985. A summary of the biostratigraphy of the Newark Supergroup of eastern North America with comments on provinciality. In Congreso Latinoamericano de Paleontologia Mexico, Simposio Sobre Floras del Triasico Tardio, su Fitogeografia y Palecologia, Memoria (ed. Weber, R. III), pp. 6781. Mexico City: UNAM Instituto de Geologia.Google Scholar
Dadlez, R. 1969. Stratigraphy of the Lias in Western Poland. Prace Instytutu Geologicznego 57, 192 (in Polish, English summary).Google Scholar
Dadlez, R. 1972. Kamień Pomorski IG-1. Profile Głębokich Otworów Wiertniczych Instytutu Geologicznego 1, 1150 (in Polish, English summary).Google Scholar
Dadlez, R., Iwanow, A., Leszczyński, K. & Marek, S. 1998. Tectonic Map of the Zechstein-Mesozoic Complex in the Polish Lowlands 1: 500.000. Polish Geological Institute.Google Scholar
Deenen, M. H. L., Ruhl, M., Bonis, N. R., Krijgsman, W., Kürschner, W. M., Reitsma, M. & Van Bergen, M. J. 2010. A new chronology for the end-Triassic mass extinction. Earth and Planetary Science Letters 291, 113–25.CrossRefGoogle Scholar
Dickin, A. P. 1995. The Re-Os system. In Radiogenic Isotope Geology (ed. Dickin, A. P.), pp. 202–24. Cambridge: Cambridge University Press.Google Scholar
Faure, G. 1986. Principles of Isotope Geology, 2nd ed. New York: J. Wiley and Sons, 589 pp.Google Scholar
Fijałkowska, A. 1989. Badania sporowo-pyłkowe osadów dolnego liasu w profile Skarżysko-Kamienna IG 1. Kwartalnik Geologiczny 33, 199208 (in Polish, English summary).Google Scholar
Fijałkowska, A. 1992. Palynostratigraphy of the Keuper and Rhaetic in north-western margin of the Holy Cross Mts. Geological Quarterly 36, 199220.Google Scholar
Fijałkowska-Mader, A. 1999. Palynostratigraphy, palaeoecology and palaeoclimatology of the Triassic in South-eastern Poland. In Epicontinental Triassic, Vol. 1 (eds Bachmann, G. H. & Lerche, I.), pp. 601–27. Zentralblatt für Geologie und Paläontologie, Part I (1998)/7–8.Google Scholar
Fisher, M. J. 1972. The Triassic palynofloral succession in England. Geoscience and Man 4, 101–9.CrossRefGoogle Scholar
Fowell, S. J. & Olsen, P. E. 1993. Time calibration of Triassic–Jurassic microfloral turnover, eastern North America. Tectonophysics 222, 361–9.CrossRefGoogle Scholar
Galli, M. T., Jadoul, F., Bernasconi, S. M. & Weissert, H. 2005. Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology 216, 203–14.CrossRefGoogle Scholar
Geyh, M. A. & Schleicher, H. 1990. Rhenium/osmium (187Re/187Os) method. In Absolute Age Determination (eds Geyh, M. A. & Schleicher, H.), pp. 111–14. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Glasspool, I. J. & Scott, C. 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience 3, 627–30.CrossRefGoogle Scholar
Götz, A. E, Ruckwied, K., Pálfy, J. & Haas, J. 2009. Palynological evidence of synchronous changes within the terrestrial and marine realm at the Triassic/Jurassic boundary (Csövár section, Hungary). Review of Palaeobotany and Palynology 156, 401–9.CrossRefGoogle Scholar
Guex, J., Bartolini, A., Atudorei, V. & Taylor, D. 2004. High-resolution ammonite and carbon isotope stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada). Earth and Planetary Science Letters 225, 2941.CrossRefGoogle Scholar
Haas, J. & Tardy-Filacz, E. 2004. Facies changes in the Triassic–Jurassic boundary interval in an intraplatform basin succession at Csovar (Transdanubian Range, Hungary). Sedimentary Geology 168, 1948.CrossRefGoogle Scholar
Hallam, A. 1997. Estimates of the amount and rate of sea-level change across the Rhaetian-Hettangian and Pliensbachian-Toarcian boundaries (latest Triassic to Early Jurassic). Journal of the Geological Society, London 154, 773–9.CrossRefGoogle Scholar
Hallam, A. 2002. How catastrophic was the end-Triassic mass extinction? Lethaia 35, 147–57.Google Scholar
Hallam, A. & Wignall, P. B. 1997. Mass Extinctions and Their Aftermath. Oxford: Oxford University Press, 320 pp.CrossRefGoogle Scholar
Hallam, A. & Wignall, P. B. 1999. Mass extinctions and sea-level changes. Earth-Science Reviews 48, 217–50.CrossRefGoogle Scholar
Harris, T. M. 1937. The fossil flora of Scoresby Sound East Greenland. 5. Stratigraphic relations. Meddelelser om Grønland 112, 1114.Google Scholar
Hasegawa, T. 1997. Cenomanian-Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 130, 251–73.CrossRefGoogle Scholar
Hesselbo, S. P., McRoberts, C. A. & Pálfy, J. 2007. Triassic/Jurassic boundary events: problems, progress, possibilities. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 110.CrossRefGoogle Scholar
Hesselbo, S. P., Robinson, S. A. & Surlyk, F. 2004. Sea-level change and facies development across potential Triassic-Jurassic boundary horizons, SW Britain. Journal of the Geological Society, London 161, 365–79.CrossRefGoogle Scholar
Hesselbo, S. P., Robinson, S. A., Surlyk, F. & Piasecki, S. 2002. Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology 30, 251–4.2.0.CO;2>CrossRefGoogle Scholar
Hillebrandt, A. V., Krystyn, I. & Kürschner, W. M., with contributions by Bown, P., McRoberts, M., Uhl, M., Simms, M., Tomasovych, A. & Ulrichs, M. 2007. A candidate GSSP for the base of the Jurassic in the Northern Calcareous Alps (Kuhjoch section; Karwendel Mountains, Tyrol, Austria). International Subcommission on Jurassic Stratigraphy Newsletter 34, 138.Google Scholar
Hounslow, M. W., Posen, P. E. & Warrington, G. 2004. Magnetostratigraphy and biostratigraphy of the Upper Triassic and lowermost Jurassic succession, St. Audrie's Bay, UK. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 331–58.CrossRefGoogle Scholar
Hubbard, R. N. L. B. & Boulter, M. C. 2000. Phytogeography and paleoecology in Western Europe and Eastern Greenland near the Triassic–Jurassic boundary. Palaios 15, 120–31.2.0.CO;2>CrossRefGoogle Scholar
Jahren, A. H., Arens, N. C. & Harbeson, S. A. 2008. Prediction of atmospheric δ13CCO2 using fossil plant tissues. Reviews of Geophysics 46, RG1002, doi:10.1029/2006RG000219.CrossRefGoogle Scholar
Killops, S. & Killops, V. 2005. Introduction to Organic Geochemistry. Oxford: Blackwell Publishing.Google Scholar
Koeberl, C. 1998. Identification of meteoritic components in impactites. In Meteorites: Flux with Time and Impact Effects (eds Grady, M. M., Hutchison, R., McCall, G. J. H. & Rothery, D. A.), pp. 133–53. Geological Society of London, Special Publication no. 140.Google Scholar
Koeberl, C. & Shirey, S. B. 1997. Re-Os isotope systematics as a diagnostic tool for the study of impact craters and distal ejecta. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 2546.CrossRefGoogle Scholar
Korte, C., Hesselbo, S. P., Jenkyns, H. C., Rickaby, R. E. M. & Spötl, C. 2009. Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain. Journal of the Geological Society, London 166, 431–45.CrossRefGoogle Scholar
Kürschner, W. M., Bonis, N. R. & Krystyn, L. 2007. Carbon-isotope stratigraphy of the Triassic–Jurassic transition in the Tiefengraben section, Northern Calcareous Alps. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 257–80.CrossRefGoogle Scholar
Kürschner, W. M. & Herngreen, W. 2010. Triassic palynology of central and northwestern Europe: a review of palynofloral diversity patterns and biostratigraphic subdivisions. In The Triassic Timescale (ed. Lucas, S. G.), pp. 263–83. Geological Society of London, Special Publication no. 334.Google Scholar
Kump, L. R. & Arthur, M. A. 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chemical Geology 161, 181–98.CrossRefGoogle Scholar
Kuroda, J., Hori, R. S., Suzuki, K., Gröcke, D. R. & Ohkouchi, N. 2010. Marine osmium isotope record across the Triassic-Jurassic boundary from a Pacific pelagic site. Geology 38, 1095–8.CrossRefGoogle Scholar
Lindström, S. & Erlström, M. 2006. The Late Rhaetian transgression in southern Sweden: regional (and global) recognition and relation to the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 241, 339–72.CrossRefGoogle Scholar
Lucas, S. G. & Tanner, L. H. 2007. The nonmarine Triassic–Jurassic boundary in the Newark Supergroup of eastern North America. Earth-Science Reviews 84, 120.CrossRefGoogle Scholar
Luck, J. M. & Turekian, K. K. 1983. Osmium 187/Osmium 186 in manganese nodules and the Cretaceous-Tertiary boundary. Science 222, 613–15.CrossRefGoogle ScholarPubMed
Lund, J. 1977. Rhaetic to Lower Liassic palynology of the onshore south-eastern North Sea Basin. Danmarks Geologiske Undersøgelse II 109, 181.CrossRefGoogle Scholar
Mander, L., Kürschner, W. M. & McElwain, C. 2010. An explanation for conflicting records of Triassic-Jurassic plant diversity. Proceedings of the National Academy of Sciences 107, 15351–6.CrossRefGoogle ScholarPubMed
Marcinkiewicz, T. 1971. The stratigraphy of the Rhaetian and Lias in Poland based on megaspore investigations. Prace Instytutu Geologicznego 65, 158 (in Polish, English summary).Google Scholar
Marcinkiewicz, T. & Orłowska-Zwolińska, T. 1994. Miospores, megaspores and Lepidopteris ottonis (Goeppert) Schimper in the uppermost Triassic deposits from Poland. Geological Quarterly 38, 97116.Google Scholar
Marynowski, L. & Simoneit, B. R. T. 2009. Widespread Late Triassic to Early Jurassic wildfire records from Poland: evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios 24, 785–98.CrossRefGoogle Scholar
Marzoli, A., Bertrand, H., Knight, K. B., Cirilli, S., Buratti, N., Verati, C., Nomade, S., Renne, P. R., Youbi, N., Martini, R., Allenbach, K., Neuwerth, R., Rapaille, C., Zaninetti, L. & Bellieni, G. 2004. Synchrony of the Central Atlantic Magmatic Province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology 32, 973–6.CrossRefGoogle Scholar
Marzoli, A., Jourdan, F., Puffer, J. H., Cuppone, T., Tanner, L. H., Weems, R. E., Bertrand, H., Cirilli, S., Bellieni, G. & De Min, A. 2011. Timing and duration of the Central Atlantic magmatic province in the Newark and Culpeper basins, eastern U.S.A. Lithos 122, 175–88.CrossRefGoogle Scholar
McElwain, J. C., Beerling, D. J. & Woodward, F. I. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285, 1386–90.CrossRefGoogle ScholarPubMed
McElwain, J. C., Popa, M. E., Hesselbo, S. P., Haworth, M. & Surlyk, F. 2007. Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology 33, 547–73.CrossRefGoogle Scholar
McElwain, J. C., Wagner, P. & Hesselbo, S. P. 2009. Fossil plant relative abundances indicate sudden loss of late Triassic biodiversity in East Greenland. Science 324, 1554–6.CrossRefGoogle ScholarPubMed
McRoberts, C. A. & Newton, C. R. 1995. Selective extinction among end-Triassic European bivalves. Geology 23, 102–4.2.3.CO;2>CrossRefGoogle Scholar
Morbey, S. J. 1975. The palynostratigraphy of the Rhaetian stage, Upper Triassic in the Kendlbachgraben, Austria. Palaeontographica Abteilung B Paläophytologie 152, 175.Google Scholar
Morton, N. 2008 a. Selection and voting procedures for the base Hettangian. International Subcommission on Jurassic Stratigraphy Newsletter 35, 67.Google Scholar
Morton, N. 2008 b. Details of voting on proposed GSSP and ASSP for the base of the Hettangian Stage and Jurassic System. International Subcommission on Jurassic Stratigraphy Newsletter 35, 74.Google Scholar
Morton, N., Warrington, G. & Bloos, G. 2008. Foreword. International Subcommission on Jurassic Stratigraphy Newsletter 35, 6873.Google Scholar
Muñoz-Espadas, M. J., Martinez-Frias, J. & Rosario, L. 2003. Main geochemical signatures related to meteoritic impacts in terrestrial rocks: a review. In Impact Markers in the Stratigraphic Record (eds Koeberl, C. & Muñoz-Espadas, M. J.), pp. 6590. Berlin: Springer.CrossRefGoogle Scholar
Muttoni, G., Kent, D. V., Jadoul, F., Olsen, P. E., Rigo, M., Galli, M. T. & Nicora, A. 2010. Rhaetian magneto-biostratigraphy from the Southern Alps (Italy): constraints on Triassic chronology. Palaeogeography, Palaeoclimatology, Palaeoecology 285, 116.CrossRefGoogle Scholar
Olsen, P. E., Kent, D. V., Sues, H. D., Koeberl, C., Huber, H., Montanari, A., Rainforth, E. C., Fowell, S. J., Szajna, M. J. & Hartline, B. W. 2002. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296, 1305–7.CrossRefGoogle Scholar
Orbell, G. 1973. Palynology of the British Rhaeto–Liassic. Bulletin of Geological Survey of Great Britain 44, 144.Google Scholar
Orłowska-Zwolińska, T. 1977. Palynological correlation of the Bunter and Muschelkalk in selected profiles from Western Poland. Acta Geologica Polonica 27, 417–30.Google Scholar
Orłowska-Zwolińska, T. 1979. Miospory. In Budowa geologiczna Polski. 3. Atlas skamieniałości przewodnich i charakterystycznych. 2a. Mesozoik-Trias (ed. Malinowska, L.), pp. 159291. Warsaw: Wydawnictwa Geologiczne (in Polish, English summary).Google Scholar
Orłowska-Zwolińska, T. 1983. Palynostratigraphy of the upper part of Triassic epicontinental sediments in Poland. Prace Instytutu Geologicznego 104, 188.Google Scholar
Orłowska-Zwolińska, T. 1985. Palynological zones of the Polish epicontinental Triassic. Bulletin Polish Academy of Sciences, Earth Sciences 33, 107–17.Google Scholar
Pálfy, J. 2003. Volcanism of the Central Atlantic Magmatic Province as a potential driving force in the end-Triassic mass extinction. In The Central Atlantic Magmatic Province: Insights from fragments of Pangea (eds Hames, W. E., McHone, J. G., Renne, P. & Ruppel, C.), pp. 255–67. American Geophysical Union, Geophysical Monograph vol. 136. Washington, DC, USA.CrossRefGoogle Scholar
Pálfy, J. & Dosztaly, L. 2000. A new marine Triassic–Jurassic boundary section in Hungary. GeoResearch Forum 6, 173–80.Google Scholar
Pálfy, J., Smith, P. L. & Mortensen, J. K. 2000. A U-Pb and 40Ar/39Ar time scale for the Jurassic. Canadian Journal of Earth Sciences 37, 923–44.CrossRefGoogle Scholar
Pálfy, J., Demeny, A., Haas, J., Hetenyi, M., Orchard, M. J. & Veto, I. 2001. Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary. Geology 29, 1047–50.2.0.CO;2>CrossRefGoogle Scholar
Pálfy, J., Demeny, A., Haas, J., Carter, E. S., Gorog, A., Halasz, D., Oravecz-Scheffer, A., Hetenyi, M., Marton, E., Orchard, M. J., Ozsvart, P., Veti, I. & Zajzon, N. 2007. Triassic–Jurassic boundary events inferred from integrated stratigraphy of the Csövár section, Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 1133.CrossRefGoogle Scholar
Poulsen, N. E. & Riding, J. B. 2003. The Jurassic dinoflagellate cyst zonation of subboreal Northwest Europe. Geological Survey of Denmark and Greenland Bulletin 1, 115–44.CrossRefGoogle Scholar
Pedersen, K. R. & Lund, J. J. 1980. Palynology of the plant-bearing Rhaetian to Hettangian Kap Stewart Formation, Scoresby Sund, East Greenland. Review of Palaeobotany and Palynology 31, 169.CrossRefGoogle Scholar
Pieńkowski, G. 2004. The epicontinental Lower Jurassic of Poland. Polish Geological Institute Special Papers 12, 1154Google Scholar
Pieńkowski, G. & Waksmundzka, M. 2009. Palynofacies in Lower Jurassic epicontinental deposits of Poland: tool to interpret sedimentary environments. Episodes 32, 2132.CrossRefGoogle Scholar
Ruckwied, K. & Götz, A. E. 2009. Climate change at the Triassic/Jurassic boundary: palynological evidence from the Furkaska section (Tatra Mountains, Slovakia). Geologica Carpathica 60, 139–49.CrossRefGoogle Scholar
Ruhl, M., Kürschner, W. M. & Krystyn, L. 2009. Triassic–Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria). Earth and Planetary Science Letters 281, 169–87.CrossRefGoogle Scholar
Ruhl, M., Kürschner, W. M., Reichart, G. J. & Krystyn, L. 2007. Detailed carbon isotope analyses of Triassic–Jurassic key sections in the western Tethyan realm. New Mexico Museum of Natural History and Sciences Bulletin 41, 368.Google Scholar
Ruhl, M., Veld, H. & Kürschner, W. M. 2010. Sedimentary organic matter characterization of the Triassic–Jurassic boundary GSSP at Kuhjoch (Austria). Earth and Planetary Science Letters 292, 1726.CrossRefGoogle Scholar
Sephton, M.A., Amor, K., Franchi, I. A., Wignall, P. B., Newton, R. & Zonneveld, J.-P. 2002. Carbon and nitrogen isotope disturbances and an end-Norian (Late Triassic) extinction event. Geology 30, 1119–22.2.0.CO;2>CrossRefGoogle Scholar
Simms, M. J. 2007. Uniquely extensive soft-sediment deformation in the Rhaetian of the UK: evidence for earthquake or impact? Palaeogeography, Palaeoclimatology, Palaeoecology 244, 407–23.CrossRefGoogle Scholar
Simms, M. J. & Jeram, A. J. 2006. Waterloo Bay, Larne, Northern Ireland: a potential GSSP for the base of the Jurassic System. Volumina Jurassica 4, 297–8.Google Scholar
Schoene, B., Guex, J., Bartolini, A., Schaltegger, U. & Blackburn, T. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38, 387–90.CrossRefGoogle Scholar
Schuurman, W. M. L. 1979. Aspects of late Triassic palynology. 3. Palynology of latest Triassic and earliest Jurassic deposits of the northern limestone alps in Austria and southern Germany, with special reference to a palynological characterization of the Rhaetian stage in Europe. Review of Palaeobotany and Palynology 27, 5375.CrossRefGoogle Scholar
Tanner, L. H., Lucas, S. G. & Chapman, M. G. 2004. Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews 65, 103–39.CrossRefGoogle Scholar
Turekian, K. K. 1982. Potential of 187Os/186Os as a cosmic versus terrestrial indicator in high iridium layers of sedimentary strata. Geological Society of America Special Paper 190, 243–9.Google Scholar
Tyson, R. V. 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. London: Chapman & Hall.CrossRefGoogle Scholar
Van de Schootbrugge, B., Quan, T. M., Lindström, S., Püttmann, W., Heunisch, C., Pross, J., Fiebig, J., Petschick, R., Röhling, H.-G., Richoz, S., Rosenthal, Y. & Falkowski, P. G. 2009. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience 2, 589–94.CrossRefGoogle Scholar
Van Veen, P. M. 1995. Time calibration of Triassic/Jurassic microfloral turnover, eastern North America – Comment. Tectonophysics 245, 93–5.CrossRefGoogle Scholar
Ward, P. D., Haggart, J. W., Carter, E. S., Wilbur, D., Tipper, H. W. & Evans, T. 2001. Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292, 1148–51.CrossRefGoogle ScholarPubMed
Ward, P. D, Garrison, G. H., Haggart, J. W., Kring, D. A. & Beattie, M. J. 2004. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and the cause of the Triassic/Jurassic mass extinction. Earth and Planetary Science Letters 224, 589600.CrossRefGoogle Scholar
Ward, P. D., Garrison, G. H., Williford, K. H., Kring, D. A., Goodwin, D., Beattie, M. & McRoberts, C. A. 2007. The organic carbon isotopic and paleontological record across the Triassic-Jurassic boundary at the candidate GSSP section at Ferguson Hill, Muller Canyon, Nevada, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 281–90.CrossRefGoogle Scholar
Warrington, G. & Harland, R. 1975. Palynology of the Trias and Lower Lias of the Larne Borehole. Bulletin of the Geological Survey of Great Britain 50, 3750.Google Scholar
Warrington, G., Cope, J. C. W. & Ivimey-Cook, H. C. 1994. St. Audrie's Bay, Somerset, England: a candidate Global Stratotype Section and Point for the base of the Jurassic System. Geological Magazine 133, 191200.CrossRefGoogle Scholar
Whiteside, J. H., Olsen, P. E., Eglinton, T., Brookfield, M. E. & Sambrotto, R. N. 2010. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proceedings of the National Academy of Sciences 107, 6721–5.CrossRefGoogle Scholar
Williford, K., Ward, P., Garrison, G. & Buick, R. 2007. An extended stable organic carbon isotope record across the Triassic-Jurassic boundary in the Queen Charlotte Islands, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 290–6.CrossRefGoogle Scholar
Ziaja, J. 2006. Lower Jurassic spores and pollen grains from Odrowąż, Mesozoic margin of the Holy Cross Mountains, Poland. Acta Palaeobotanica 46, 383.Google Scholar