Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:45:05.237Z Has data issue: false hasContentIssue false

Geochronology, petrology and geochemistry of the Mesozoic Dashizhuzi granites and lamprophyre dykes in eastern Hebei – western Liaoning: implications for lithospheric evolution beneath the North China Craton

Published online by Cambridge University Press:  05 June 2017

LE XIONG*
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
JUNHAO WEI
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
WENJIE SHI
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
LEBING FU
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
HUAN LI
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
HONGZHI ZHOU
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
JIAJIE CHEN
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
MENGTING CHEN
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
*
*Author for correspondence: 601224101@qq.com

Abstract

Geochronological, elemental and isotopic data of the Dashizhuzi granites and lamprophyre dykes from the eastern Hebei – western Liaoning on the northern North China Craton (NCC) provide an insight into the nature of their magma sources and subcontinental lithospheric mantle. The Dashizhuzi granites have an emplacement age of 226 Ma. They have enriched lithospheric mantle type 1 (EM1-like) Sr–Nd isotopic compositions, and have distinctive features of high Na2O and Sr and low Y with high Sr/Y and (La/Yb)N ratios. These characteristics show that the Dashizhuzi granites originated directly from melting of mafic lower crust composed of pre-existing ancient crustal and enriched mantle-derived juvenile crustal materials at normal continental crustal depth of 33–40 km. The lamprophyre dykes are dated at 167 Ma, and can be divided into two groups. The Group 1 dykes have variable Sr–Nd isotopic compositions and mid-ocean-ridge basalt (MORB-) like Th/U, Ba/Th and Ce/Pb ratios, whereas the Group 2 dykes have enriched Sr–Nd isotopic compositions and notable high Co, Cr, MgO and low Al2O3 characteristics. These distinctive features suggest that the Group 1 dykes were derived from a relatively fertile lithospheric mantle source (garnet-facies amphibole-bearing lherzolite) which has experienced variable degrees of asthenospheric mantle-derived melt–peridotite interaction prior to melting. However, the Group 2 dykes were derived from an ancient garnet-facies phlogopite and/or amphibole-bearing lherzolite lithospheric mantle. Thinning of the Early Mesozoic lithospheric mantle beneath the northern NCC is dominantly through melt–peridotite interaction and thermo-mechanical erosion prior to Middle Jurassic time. The chemical compositions have been modified at the bottom of the lithospheric mantle through melt–peridotite interaction processes.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atherton, M. P. & Petford, N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144–6.Google Scholar
Blichert-Toft, J., Chauvel, C. & Albarède, F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology 127, 248–60.Google Scholar
Bouvier, A., Vervoort, J. D. & Patchett, P. J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 4857.Google Scholar
Chen, B., Jahn, B. M. & Zhai, M. G. 2003. Sr–Nd isotopic characteristics of the Mesozoic magmatism in the Taihang-Yanshan orogen, North China Craton, and implications for Archaean lithosphere thinning. Journal of the Geological Society 160, 963–70.Google Scholar
Chu, Z. Y., Wu, F. Y., Walker, R. J., Rudnick, R. L., Pitcher, L., Puchtel, I. S., Yang, Y. H. & Wilde, S. A. 2009. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. Journal of Petrology 50, 1857–98.Google Scholar
Condie, K. C. & Selverstone, J. 1999. The crust of the Colorado Plateau: new views of an old arc. Journal of Geology 107, 387–97.Google Scholar
Defant, M. J. & Drummond, M. S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–5.Google Scholar
Drummond, M. S. & Defant, M. J. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research 95, 21503–21.Google Scholar
Du, J. J., Ma, Y. S., Zhao, Y. & Wang, Y. B. 2007. SHRIMP U–Pb zircon dating of the Yiwulüshan granite in western Liaoning and its geological implications. Geology in China 34, 2633 (in Chinese with English Abstract).Google Scholar
Duan, X. X., Zeng, Q. D., Yang, J. H., Liu, J. M., Wang, Y. B. & Zhou, L. L. 2014. Geochronology, geochemistry and Hf isotope of Late Triassic magmatic rocks of Qingchengzi district in Liaodong peninsula, Northeast China. Journal of Asian Earth Sciences 91, 107–24.Google Scholar
Duggen, S., Hoernle, K., Bogaard, P. V. & Garbe-Schönberg, D. 2005. Post-collisional transition from subduction to intraplate-type magmatism in the westernmost Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology 46, 1155–201.Google Scholar
Fu, L. B., Wei, J. H., Kusky, T. M., Chen, H. Y., Tan, J., Li, Y. J., Kong, L. J. & Jiang, Y. J. 2012a. Triassic shoshonitic dykes from the northern North China Craton: petrogenesis and geodynamic significance. Geological Magazine 149, 3955.Google Scholar
Fu, L. B., Wei, J. H., Kusky, T. M., Chen, H. Y., Tan, J., Li, Y. J., Shi, W. J., Chen, C. & Zhao, S. Q. 2012b. The Cretaceous Duimiangou adakite-like intrusion from the Chifeng region, northern North China Craton: crustal contamination of basaltic magma in an intracontinental extensional environment. Lithos 134–5, 273–88.Google Scholar
Fu, L. B., Wei, J. H., Wei, Q. R., Tan, J., Li, Y. J., Li, Y. H., Wang, M. Z. & Jiang, Y. J. 2010. Petrogenesis and geodynamic setting of Late Triassic dykes of Jinchanggouliang, eastern Inner Mongolia. Earth Science (Journal of China University of Geosciences) 35, 933–46 (in Chinese with English abstract).Google Scholar
Furman, T. & Graham, D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48, 237–62.Google Scholar
Gao, S., Luo, T. G., Zhang, B. R., Zhang, H. F., Han, Y. W., Zhao, Z. D. & Hu, Y. K. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta 62, 1959–75.Google Scholar
Gao, S., Rudnick, R. L., Carlson, R. W., McDonough, W. F. & Liu, Y. S. 2002. Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth and Planetary Science Letters 198, 307–22.Google Scholar
Gao, S., Rudnick, R. L., Yuan, H. L., Liu, X. M., Liu, Y. S., Xu, W. L., Ling, W. L., Ayers, J., Wang, X. C. & Wang, Q. H. 2004. Recycling lower continental crust in the North China Craton. Nature 432, 892–7.Google Scholar
Goldstein, S. L., O'Nions, R. K. & Hamilton, P. J. 1984. A Sm–Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters 70, 221–36.Google Scholar
Griffin, W. L., O'Reilly, S. Y. & Ryan, C. G. 1992. Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China: proton microprobe studies. In International Symposium on Cenozoic Volcanic Rocks and Deep-seated Xenoliths of China and Its Environs, pp. 20, 812 September 1992, Beijing.Google Scholar
Griffin, W. L., Zhang, A. D., O'Reilly, S. Y. & Ryan, C. G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In Mantle Dynamics and Plate Internationals in East Asia (eds Flower, M., Chung, S. L. & Lo, C. H.), pp. 107–26. American Geophysical Union, Geodynamics Series 27.Google Scholar
Guo, F., Nakamuru, E., Fan, W. M., Kobayoshi, K. & Li, C. W. 2007. Generation of Palaeocene akakitic andesites by magma mixing; Yanji area, NE China. Journal of Petrology 48, 661–92.Google Scholar
Hamilton, P. J., O'Nions, R. K., Bridgwater, D. & Nutman, A. 1983. Sm–Nd studies of Archaean metasediments and metavolcanics from West Greenland and their implications for the Earth's early history. Earth and Planetary Science Letters 62, 263–72.Google Scholar
Han, B. F., Kagami, H. & Li, H. M. 2004. Age and Nd–Sr isotopic geochemistry of the Guangtoushan alkaline granite, Hebei province, China: implications for Early Mesozoic crust-mantle interaction in North China Block. Acta Petrologica Sinica 20, 1375–88 (in Chinese with English abstract).Google Scholar
Hu, Z. C., Liu, Y. S., Gao, S., Liu, W. G., Zhang, W., Tong, X. R., Lin, L., Zong, K. Q., Li, M., Chen, H. H., Zhou, L. & Yang, L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry 27, 1391–9.Google Scholar
Jahn, B. M. & Zhang, Z. Q. 1984. Archean granulite gneisses from eastern Hebei Province China: rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology 85, 224–43.Google Scholar
Jiang, Y. H., Jiang, S. Y., Ling, H. F. & Ni, P. 2010. Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liaodong Peninsula, NE China. Mineralogy and Petrology 100, 127–51.Google Scholar
Jin, W., Li, S. X. & Liu, X. S. 1991. The metamorphic dynamics of Early Precambrian high-grade metamorphic rocks series in Daqing-Ulashan area, Inner Mongolia. Acta Petrlogica Sinica 7, 2735 (in Chinese with English abstract).Google Scholar
Kay, R. W. 1978. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research 4, 117–32.Google Scholar
Kelemen, P. D., Dick, H. J. B. & Quick, J. E. 1992. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358, 635–41.Google Scholar
Klemme, S. & O'Neill, H. S. 2000. The near-solidus transition from garnet lherzolite to spinel lherzolite. Contributions to Mineralogy and Petrology 138, 237–48.Google Scholar
Kröner, A., Cui, W. Y., Wang, S. Q., Wang, C. Q. & Nemchin, A. A. 1998. Single zircon ages from high-grade rocks of the Jianping complex, Liaoning Province, NE China. Journal of Asian Earth Sciences 16, 519–32.Google Scholar
Li, J. Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences 26, 207–24.Google Scholar
Li, Q. L., Wu, F. Y., Li, X. H., Qiu, Z. L., Liu, Y., Yang, Y. H. & Tang, G. Q. 2011. Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle. Lithos 126, 127–34.Google Scholar
Li, S. Z., Zhao, G. C., Sun, M., Han, Z. Z., Luo, Y., Hao, D. F. & Xia, X. P. 2005. Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences 24, 659–74.Google Scholar
Lin, S. Z., Zhu, G., Yan, L. J., Song, L. H. & Liu, B. 2013. Structural and chronological constraints on a Late Paleozoic shortening event in the Yanshan tectonic belt. Chinese Science Bulletin 58, 3922–36 (in Chinese with English abstract).Google Scholar
Ling, W. L., Duan, R. C., Xie, X. J., Zhang, Y. Q., Zhang, J. B., Cheng, J. P., Liu, X. M. & Yang, H. M. 2009. Contrasting geochemistry of the Cretaceous volcanic suites in Shandong Province and its implications for the Mesozoic lower crust delamination in the eastern North China Craton. Lithos 133, 640–58.Google Scholar
Liu, D. Y., Nutman, A. P., Compston, W., Wu, J. S. & Shen, Q. H. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology 20, 339–42.Google Scholar
Liu, H. T., Sun, S. H., Liu, J. M. & Zhai, M. G. 2002. The Mesozoic high-Sr granitoids in the northern marginal region of North China Craton: geochemistry and source region. Acta Petrologica Sinica 18, 257–74 (in Chinese with English abstract).Google Scholar
Liu, J. G., Carlson, R. W., Rudnick, R. L., Walker, R. J., Gao, S. & Wu, F. Y. 2012. Comparative Sr-Nd-Hf-Os-Pb isotope systematics of xenolithic peridotites from Yangyuan, North China Craton: Additional evidence for a Paleoproterozoic age. Chemical Geology 332–3, 114.Google Scholar
Liu, J. G., Rudnick, R. L., Walker, R. J., Gao, S., Wu, F. Y., Piccoli, P. M., Yuan, H. L., Xu, W. L. & Xu, Y. G. 2011. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: an example from the North China Craton. Geochimica et Cosmochimica Acta 75, 3881–902.Google Scholar
Liu, J. G., Rudnick, R. L., Walker, R. J., Xu, W. L., Gao, S. & Wu, F. Y. 2015. Big insights from tiny peridotites: evidence for persistence of Precambrian lithosphere beneath the eastern North China Craton. Tectonophysics 650, 104–12.Google Scholar
Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q. & Wang, D. B. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology 51, 537–71.Google Scholar
Liu, Y. S., Gao, S., Yuan, H. L., Zhou, L., Liu, X. M., Wang, X. C., Hu, Z. C. & Wang, L. S. 2004. U–Pb zircon ages and Nd, Sr and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chemical Geology 211, 87109.Google Scholar
Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C. G. & Chen, H. H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 3443.Google Scholar
Liu, Y. S., Hu, Z. C., Zong, K. Q., Gao, C. G., Gao, S., Xu, J. & Chen, H. H. 2010b. Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin 55, 1535–46.Google Scholar
Lu, F. X., Han, Z. G., Zheng, J. P. & Ren, Y. X. 1991. Characteristics of Paleozoic mantle-lithosphere in Fuxian, Liaoning Province. Geological Science and Technology Information 10, 220 (in Chinese with English abstract).Google Scholar
Ludwig, K. R. 2003. User's Manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 4.Google Scholar
Luo, Z. K., Li, J. J., Guan, K., Qiu, Y. S., Qiu, Y. M., Mcnaughton, N. J. & Groves, D. I. 2004. SHRIMP zircon U–Pb age of the granite at Baizhangzi gold field in Lingyuan, Liaoning province. Geological Survey and Research 27, 82–5 (in Chinese with English abstract).Google Scholar
Luo, Z. K., Miao, L. C., Guan, K., Qiu, Y. S. & Qiu, Y. M. 2003. SHRIMP U–Pb zircon dating of the Dushan granitic batholiths and related granite-porphyry dyke, eastern Hebei Province, China, and their geological significance. Geochimica 32, 173–80 (in Chinese with English abstract).Google Scholar
Ma, L., Jiang, S. Y., Hofmann, A. W., Dai, B. Z., Hou, M. L., Zhao, K. D., Chen, L. H., Li, J. W. & Jiang, Y. H. 2014a. Lithospheric and asthenospheric sources of lamprophyres in the Jiandong Peninsula: a consequence of rapid lithospheric thinning beneath the North China Craon? Geochimica et Cosmochimica Acta 124, 250–71.Google Scholar
Ma, L., Jiang, S. Y., Hou, M. L., Dai, B. Z., Jiang, Y. H., Yang, T., Zhao, K. D., Pu, W., Zhu, Z. Y. & Xu, B. 2014b. Geochemistry of Early Cretaceous calc-alkaline lamprophyres in the Jiaodong Peninsula: implication for lithospheric evolution of the eastern North China Craton. Gondwana Research 25, 859–72.Google Scholar
Ma, Q., Zheng, J. P., Griffin, W. L., Zhang, M., Tang, H. Y., Su, Y. P. & Ping, X. Q. 2012. Triassic “adakitic” rocks in an extensional setting (North China): melts from the cratonic lower crust. Lithos 149, 159–73.Google Scholar
Ma, Q., Zheng, J. P., Xu, Y. G., Griffin, W. L. & Zhang, R. S. 2015. Are continental “adakites” derived from thickened or foundered lower crust? Earth and Planetary Science Letters 419, 125–33.Google Scholar
Ma, X. Y. 1987. Lithospheric Dynamics Map of China and Adjacent Seas (1:4,000,000) and Explanatory Notes. Beijing: Geological Publishing House (in Chinese).Google Scholar
MacPherson, C. G., Dreher, S. T. & Thirlwall, M. F. 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters 243, 581–93.Google Scholar
Martin, H. 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46, 411–29.Google Scholar
Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F. & Champion, D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 124.Google Scholar
McCulloch, M. T., Rosman, K. J. R. & De Laeter, J. R. 1977. The isotopic and elemental abundance of ytterbium in meteorites and terrestrial samples. Geochimica et Cosmochimica Acta 41, 1703–7.Google Scholar
McKenzie, D. P. 1989. Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters 95, 5372.Google Scholar
McKenzie, D. & O'Nions, R. K. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology 32, 1021–91.Google Scholar
Menzies, M. A., Fan, W. M. & Zhang, M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean Craton, China. In Magmatic Processes and Plate Tectonic (eds Prichard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 7181. Geological Society of London, Special Publication no. 76.120+km+of+Archaean+lithosphere,+Sino-Korean+Craton,+China.+In+Magmatic+Processes+and+Plate+Tectonic+(eds+Prichard,+H.+M.,+Alabaster,+T.,+Harris,+N.+B.+W.+&+Neary,+C.+R.),+pp.+71–81.+Geological+Society+of+London,+Special+Publication+no.+76.>Google Scholar
Menzies, M. A. & Xu, Y. G. 1998. Geodynamics of the North China Craton. In Mantle Dynamics and Plate Internationals in East Asia (eds Flower, M., Chung, S. L. & , C. H. Lo), pp. 155–65. American Geophysical Union, Geodynamics Series 27.Google Scholar
Menzies, M. A., Xu, Y. G., Zhang, H. F. & Fan, W. M. 2007. Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96, 121.Google Scholar
Miao, L. C., Luo, Z. K., Guan, K. & Huang, J. Z. 1998. The implication of the SHRIMP U–Pb age in zircon to the petrogenesis of the Linglong granite, east Shangdong Province. Acta Petrologica Sinica 14, 198206 (in Chinese with English abstract).Google Scholar
Mu, B. L., Shao, J. A., Chu, Z. Y., Yan, G. H. & Qiao, G. S. 2001. Sm–Nd age and Sr, Nd isotopic characteristics of the Fanshan potassic alkaline ultramafic-syenite complex in Hebei province, China. Acta Petrologica Sinica 17, 358–65 (in Chinese with English abstract).Google Scholar
Niu, Y. L. 2005. Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geological Journal of China Universities 11, 946.Google Scholar
Pei, F. P., Xu, W. L., Yu, Y., Zhao, Q. G. & Yang, D. B. 2008. Petrogenesis of the Late Triassic Mayihe pluton in southern Jilin Province: evidence from zircon U–Pb geochronology and geochemistry. Earth Science Edition (Journal of Jilin University) 38, 351–62 (in Chinese with English abstract).Google Scholar
Peng, P., Zhai, M. G., Guo, J. H., Zhang, H. F. & Zhang, Y. B. 2008. Petrogenesis of Tiassic post-collisional syenite plutons in the Sino-Korean Craton: an example from North Korea. Geological Magazine 145, 637–47.Google Scholar
Peucat, J. J., Vidal, P., Bernard-Griffiths, J. & Condie, K. C. 1989. Sr, Nd, and Pb isotopic systematics in the Archean low- to high-grade transition zone of Southern India: syn-accretion vs. post-accretion granulites. The Journal of Geology 97, 537–49.Google Scholar
Pidgeon, R. T. 1980. Isotopic ages of the zircons from the Archean granulite facies rocks, Eastern Hebei, China. Geological Review 26, 198207.Google Scholar
Qian, Q. & Hermann, J. 2013. Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation. Contributions to Mineralogy and Petrology 165, 1195–224.Google Scholar
Richards, J. P. & Kerrich, R. 2007. Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology 102, 537–76.Google Scholar
Roberts, M. P. & Clemens, J. D. 1993. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21, 825–8.Google Scholar
Robinson, J. A. C. & Wood, B. J. 1998. The depth of the spinel to garnet transition at the peridotite solidus. Earth and Planetary Science Letters 164, 277–84.Google Scholar
Rudnick, R. L. & Gao, S. 2003. The composition of the continental crust. In The Crust (eds Rudnick, R. L.), pp. 164. Oxford: Elsevier-Pergamon.Google Scholar
Rudnick, R. L. & Gao, S. 2014. Composition of the continental crust. In Treatise on Geochemistry, 2nd edition (eds Heinrich, H. D. & Turekian, K. K.), vol. 4, pp. 151. Oxford: Elsevier.Google Scholar
Salters, V. J. M. & Stracke, A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems 5, published online 13 May 2004, doi: 10.1029/2003GC000597.Google Scholar
Schiano, P., Clocchiatti, R., Shimizu, N., Maury, R. C., Jochum, K. P. & Hofmann, A. W. 1995. Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377, 595600.Google Scholar
Shao, J. A., Chen, F. K., Lu, F. X. & Zhou, X. H. 2006. Mesozoic pulsative upwelling diapirs of asthenosphere in west Liaoning Province. Earth Science (Journal of China University of Geosciences) 31, 807–16 (in Chinese with English abstract).Google Scholar
Shao, J. A., Han, Q. J. & Li, H. M. 2000. Discovery of the Early Mesozoic granulite xenoliths in North China Craton. Science in China (Series D) 30, 148–53 (in Chinese).Google Scholar
Shao, J. A., Han, Q. J., Zhang, L. Q. & Mou, B. L. 1999. Discovery of Early Mesozoic cumulate complex xenoliths in eastern Inner Mongolia. Chinese Science Bulletin 44, 478–85 (in Chinese).Google Scholar
Shao, J. A. & Zhang, L. Q. 2002. Mesozoic dyke swarms in the north of North China. Acta Petrologica Sinica, 18, 312–8 (in Chinese with English abstract).Google Scholar
Shao, J. A., Zhang, L. Q. & Li, D. M. 2002. Three Proterozoic extensional events in North China Craton. Acta Petrologica Sinica 18, 152–60 (in Chinese with English abstract).Google Scholar
She, H. Q., Wang, Y. W., Li, Q. H., Zhang, D. Q., Feng, C. Y. & Li, D. X. 2006. The mafic granulite xenoliths and its implications to mineralization in Chaihulanzi gold deposit, Inner Mongolian, China. Acta Geologica Sinica 80, 863–75 (in Chinese with English abstract).Google Scholar
Song, B., Nutman, A. P., Liu, D. Y. & Wu, J. S. 1996. 3800 to 2500 Ma crustal evolution in Anshan area of Liaoning Province, Northeastern China. Precambrian Research 78, 7994.Google Scholar
Stern, R. A. & Hanson, G. N. 1991. Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. Journal of Petrology 32, 201–38.Google Scholar
Streck, M. J., Leeman, W. P. & Chesley, J. 2007. High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35, 351–4.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tian, W., Chen, B., Liu, C. Q. & Zhang, H. F. 2007. Zircon U–Pb age and Hf isotopic composition of the Xiaozhangjiakou ultramafic pluton in northern Hebei. Acta Petrologica Sinica 23, 583–90 (in Chinese with English abstract).Google Scholar
Wang, F., Chen, F. K., Hou, Z. H., Peng, P. & Zhai, M. G. 2009. Zircon ages and Sr–Nd–Hf isotopic composition of Late Paleozoic granitoids in the Chongli-Chicheng area, northern margin of the North China Block. Acta Petrologica Sinica 25, 3057–74 (in Chinese with English abstract).Google Scholar
Wang, Q., Wyman, D. A., Xu, J. F., Jian, P., Zhao, Z. H., Li, C. F., Xu, W., Ma, J. L. & He, B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta 71, 2609–36.Google Scholar
Windley, B. F., Alexeiev, D., Xiao, W. J., Kröner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society 164, 3147.Google Scholar
Winther, K. T. 1996. An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chemical Geology 127, 4359.Google Scholar
Wu, C. H. & Zhong, C. T. 1998. Early Proterozoic SW-NE collision model for the central part of the North China Craton: implications for tectonic regime of the khondalite downward into lower crust in Jin-Meng high-grade region. Progress in Precambrian Research 21, 2850 (in Chinese with English abstract).Google Scholar
Wu, F. Y., Jahn, B. M. & Lin, Q. 1997. Isotopic characteristics of post-orogenic granites in North China orogen and its implications for crust growth. Chinese Science Bulletin 42, 2188–92 (in Chinese).Google Scholar
Wu, F. Y., Sun, D. Y., Ge, W. C., Zhang, Y. B., Grant, M. L., Wilde, S. A. & Jahn, B. M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41, 130.Google Scholar
Wu, F. Y., Walker, R. J., Yang, Y. H., Yuan, H. L. & Yang, J. H. 2006 a. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochimica et Cosmochimica Acta 70, 5013–34.Google Scholar
Wu, F. Y., Wilde, S. A., Zhang, G. L. & Sun, D. Y. 2004. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China. Journal of Asian Earth Sciences 23, 781–97.Google Scholar
Wu, F. Y., Xu, Y. G., Gao, S. & Zheng, J. P. 2008. Lithospheric thinning and destruction of the North China Craton. Acta Petrologica Sinica 24, 1145–74 (in Chinese with English abstract).Google Scholar
Wu, F. Y., Yang, J. H. & Liu, X. M. 2005. Geochronological framework of the Mesozoic granitic magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities 11, 305–17 (in Chinese with English abstract).Google Scholar
Wu, F. Y., Yang, J. H., Zhang, Y. B. & Liu, X. M. 2006 b. Emplacement ages of the Mesozoic granites in southeastern part of the western Liaoning Province. Acta Petrologica Sinica 22, 315–25 (in Chinese with English abstract).Google Scholar
Wu, J. S., Geng, Y. S., Shen, Q. H., Liu, D. Y., Li, Z. L. & Zhao, D. M. 1991. The Early Precambrian Significant Geological Events in the North China Craton. Beijing: Geological Publishing House, pp. 1115 (in Chinese with English abstract).Google Scholar
Wu, M. Q., Zhao, G. C., Gao, J. W. & Wang, H. T. 2014. Geochemical characteristics of the Dushan complex and their geological significance. Geology in China 41, 108–21 (in Chinese with English abstract).Google Scholar
Xia, Q. K., Liu, J., Liu, S. C., Kovács, I., Feng, M. & Dang, L. 2013. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth and Planetary Science Letters 361, 8597.Google Scholar
Xiao, W. J., Windley, B. F., Hao, J. & Zhai, M. G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics 22, 1484–505.Google Scholar
Xiao, W. J., Windley, B. F., Huang, B. C., Han, C. M., Yuan, C., Chen, H. L., Sun, M., Sun, S. & Li, J. L. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences 98, 1189–17.Google Scholar
Xiong, L., Shi, W. J., Li, H., Tian, N., Chen, C., Zhou, H. Z., Zhao, S. Q. & Li, P. Y. 2017. Geochemistry, Sr-Nd-Hf isotopes and petrogenesis of Mid-Late Triassic Baizhangzi granitic intrusive rocks in eastern Hebei-western Liaoning Province. Earth Science (Journal of China University of Geosciences) 42, 207–22 (in Chinese with English abstract).Google Scholar
Xu, J. F., Shinjo, R., Defant, M. J., Wang, Q. & Rapp, R. P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust. Geology 30, 1111–4.Google Scholar
Xu, W. L., Pei, F. P., Wang, F., Meng, E., Ji, W. Q., Yang, D. B. & Wang, W. 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes. Journal of Asian Earth Sciences 74, 167–93.Google Scholar
Xu, W. L., Wang, Q. H., Wang, D. Y., Guo, J. H. & Pei, F. P. 2006a. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: evidence for partial melting of delaminated lower continental crust. Journal of Asian Earth Sciences 27, 454–64.Google Scholar
Xu, W. L., Yang, C. H., Yang, D. B., Pei, F. P., Wang, Q. H. & Ji, W. Q. 2006b. Mesozoic high Mg diorites in eastern North China Craton: constraints on the mechanism of lithospheric thinning. Earth Science Frontiers 13, 120–9 (in Chinese with English abstract).Google Scholar
Xu, X., O'Reilly, S. Y., Griffin, W. L. & Zhou, X. 1998. The nature of the Cenozoic lithosphere at Nushan, eastern China. In Mantle Dynamics and Plate Interactions in East Asia (eds Flower, M., Chung, S. L., Lo, C. H. & Lee, Y. Y.), pp. 167–96. American Geophysical Union, Geodynamics Series 27.Google Scholar
Xu, Y. G. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism. Physics and Chemistry of the Earth 26, 747–57.Google Scholar
Xu, Y. G. 2006. Using basalt geochemistry to constrain Mesozoic-Cenozoic evolution of the lithosphere beneath North China Craton. Earth Science Frontiers 13, 93104 (in Chinese with English abstract).Google Scholar
Xu, Y. G., Huang, X. L., Ma, J. L., Wang, Y. B., Iizuka, Y., Xu, J. F., Wang, Q. & Wu, X. Y. 2004. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U–Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contributions to Mineralogy and Petrology 147, 750–67.Google Scholar
Xu, Y. G., Li, H. Y., Pang, C. J. & He, B. 2009. On the timing and duration of the destruction of the North China Craton. Chinese Science Bulletin 54, 3379–96.Google Scholar
Yan, G. H., Mou, B. L., Xu, B. L., He, G. Q., Tan, L. K., Zhao, H., He, Z. F., Zhang, R. H. & Qiao, G. S. 2000. Triassic alkaline intrusive in the Yanliao-Yinshan area: chronology, Sr, Nd and Pb isotopic characteristics and their implication. Science in China (Series D) 30, 383–7 (in Chinese).Google Scholar
Yang, J. H., Sun, J. F., Zhang, M., Wu, F. Y. & Wilde, S. A. 2012. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension. Chemical Geology 328, 149–67.Google Scholar
Yang, J. H., Wu, F. Y., Wilde, S. A. & Liu, X. M. 2007. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chemical Geology 242, 155–75.Google Scholar
Ye, H., Zhang, S. H., Zhao, Y. & Wu, F. 2014. Petrogenesis and emplacement deformation of the Late Triassic Dushan composite botholith in the Yanshan fold and thrust belt: implications for the tectonic settings of the northern margin of the North China Craton during the Early Mesozoic. Earth Science Frontiers 21, 275–92 (in Chinese with English abstract).Google Scholar
Zhai, M. G. & Santosh, M. 2011. The Early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Research 20, 625.Google Scholar
Zhang, C. H., Li, C. M., Deng, H. L., Liu, Y., Liu, L., Wei, B., Li, H. B. & Liu, Z. 2011. Mesozoic contraction deformation in the Yanshan and northern Taihang mountains and its implications to the destruction of the North China Craton. Science in China (Series D) 54, 798822.Google Scholar
Zhang, H. F., Goldstein, S. L., Zhou, X. H., Sun, M., Zheng, J. P. & Cai, Y. 2008. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contributions to Mineralogy and Petrology 155, 271–93.Google Scholar
Zhang, H. F., Sum, M., Zhou, X. H., Fan, W. M., Zhai, M. G. & Yin, J. F. 2002. Mesozoic lithosphere destruction beneath the North China craton: evidence from major-, trace-element and Sr–Nd–Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology 144, 241–53.Google Scholar
Zhang, S. H., Zhao, Y., Liu, J. M., Hu, J. M., Song, B. & Wu, H. 2010a. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: a preliminary review. Acta Petrologica et Mineralogica 29, 824–42 (in Chinese with English abstract).Google Scholar
Zhang, S. H., Zhao, Y., Liu, X. H., Liu, D. Y., Chen, F. K., Xie, L. W. & Chen, H. H. 2009a. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block: constraints on the composition and evolution of the lithospheric mantle. Lithos 110, 229–46.Google Scholar
Zhang, X. H., Yuan, L. L. & Wilde, S. A. 2014. Crust/mantle interaction during the construction of an extensional magmatic dome: Middle to Late Jurassic plutonic complex from western Liaoning, North China Craton. Lithos 205, 185207.Google Scholar
Zhang, X. H., Zhang, H. F., Jiang, N. & Wilde, S. A. 2010 b. Contrasting Middle Jurassic and Early Cretaceous mafic intrusive rocks from western Liaoning, North China Craton: petrogenesis and tectonic implications. Geological Magazine 147, 844–59.Google Scholar
Zhang, S. H., Zhao, Y., Song, B., Hu, J. M., Liu, S. W., Yang, Y. H., Chen, F. K., Liu, X. M. & Liu, J. 2009b. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China Craton: geochronology, petrogenesis, and tectonic implications. Geological Society of America Bulletin 121, 181200.Google Scholar
Zhang, S. H., Zhao, Y., Ye, H., Hou, K. J. & Li, C. F. 2012. Early Mesozoic alkaline complexes in the northern North China Craton: implications for cratonic lithospheric destruction. Lithos 155, 118.Google Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Zhong, L. S. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136, 177202.Google Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Sun, M. 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research 107, 4573.Google Scholar
Zheng, J. P., Griffin, W. L., Ma, Q., O'Reilly, S. Y., Xiong, Q., Tang, H. Y., Zhao, J. H., Yu, C. M. & Su, Y. P. 2012. Accretion and reworking beneath the North China Craton. Lithos 149, 6178.Google Scholar
Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., Lu, F. X., Yu, C. M., Zhang, M. & Li, H. M. 2004a. U–Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: evolution of the lower crust beneath the North China craton. Contributions to Mineralogy and Petrology 148, 79103.Google Scholar
Zheng, J. P. & Lu, F. X. 1999. Mantle xenoliths from kimberlites, Shandong and Liaoning Paleozoic mantle character and its heterogeneity. Acta Petrologica Sinica 15, 6574 (in Chinese with English abstract).Google Scholar
Zheng, J. P., Ping, X. Q., Xia, B. & Yu, C. M. 2013. The weak Neoproterozoic thermal records in North China and its significances for the lithospheric thickness. Acta Petrologica Sinica 29, 2456–64 (in Chinese with English abstract).Google Scholar
Zheng, J. P., Yu, C. M., Lu, F. X. & Li, H. M. 2004b. Geochemical and geochronological characteristics of meta-basaltic xenoliths: implications for the evolution of continental lower crust in early time. Science in China (Series D) 34, 412–22 (in Chinese with English abstract).Google Scholar
Zhu, R. X., Yang, J. H. & Wu, F. Y. 2012. Timing of destruction of the North China Craton. Lithos 149, 5160.Google Scholar
Supplementary material: File

Xiong supplementary material

Xiong supplementary material 1

Download Xiong supplementary material(File)
File 2 MB