Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T05:43:06.792Z Has data issue: false hasContentIssue false

Relationship between blood magnesium and psychomotor retardation in drug-free patients with major depression

Published online by Cambridge University Press:  16 April 2020

J Widmer
Affiliation:
Department of Psychiatry, Division of Neuropsychiatry, Laboratory of Biochemistry, Psychiatric Hospital, University of Geneva, Chemin du Petit Bel-Air 2, CH-1225 Chêne-Bourg, Genre, Switzerland
JG Henrotte
Affiliation:
Institut de Chimie des Substances Naturelles, CNRS, F-91198 Gif-sur-Yvette, France
Y Raffin
Affiliation:
Department of Psychiatry, Division of Neuropsychiatry, Laboratory of Biochemistry, Psychiatric Hospital, University of Geneva, Chemin du Petit Bel-Air 2, CH-1225 Chêne-Bourg, Genre, Switzerland
D Mouthon
Affiliation:
Department of Psychiatry, Division of Neuropsychiatry, Laboratory of Biochemistry, Psychiatric Hospital, University of Geneva, Chemin du Petit Bel-Air 2, CH-1225 Chêne-Bourg, Genre, Switzerland
D Chollet
Affiliation:
Department of Psychiatry, Division of Neuropsychiatry, Laboratory of Biochemistry, Psychiatric Hospital, University of Geneva, Chemin du Petit Bel-Air 2, CH-1225 Chêne-Bourg, Genre, Switzerland
R Stépanian
Affiliation:
Department of Psychiatry, Division of Neuropsychiatry, Laboratory of Biochemistry, Psychiatric Hospital, University of Geneva, Chemin du Petit Bel-Air 2, CH-1225 Chêne-Bourg, Genre, Switzerland
P Bovier
Affiliation:
Department of Psychiatry, Division of Neuropsychiatry, Laboratory of Biochemistry, Psychiatric Hospital, University of Geneva, Chemin du Petit Bel-Air 2, CH-1225 Chêne-Bourg, Genre, Switzerland
Get access

Summary

In previous reports, we have observed that blood magnesium was significantly higher in drug-free patients with major depression when compared to healthy controls. This was especially true for erythrocyte magnesium. Furthermore, the most severely depressed patients had the highest intracellular magnesium content, showing that intracellular magnesium rate was related to the intensity of symptoms. We report here the results of blood magnesium measured in 88 major depressed patients as compared to 61 controls. We show that the mean erythrocyte and also plasma magnesium contents are both increased in these patients. We observe that about 40% of male and female patients have a very significant increase (25%) in intracellular magnesium content as compared to controls. However, about 60% of the hospitalised depressed patients have normal values. None of the controls has high erythrocyte magnesium. This is less evident concerning the plasma magnesium. No differences are observed between patients when classified according to the intensity of moral pain or anxiety. In contrast, the patients with mild to high psychomotor retardation score, which is an index of hypoexcitability, have significant higher erythrocyte magnesium values compared with other patients. The results of male patients without psychomotor retardation do not differ from control values. Our study suggests that central hypoexcitability might be related to an increase in intracellular magnesium observed at the peripheral level, keeping in mind that hyperexcitability, as observed in various conditions such as stress and cardiovascular disorders, is frequently associated, in contrast, with a decrease in blood magnesium.

Type
Original article
Copyright
Copyright © Elsevier, Paris 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abi-Said, D, Annegers, JF, Combs-Cantrell, D, Suki, R, Frankowski, RF, Willmore, LJ. A case control evaluation of treatment efficacy: the example of magnesium sulfate prophylaxis against eclampsia in patients with preeclampsia. J Clin Epidemiol 1997 ; 50 : 419-23CrossRefGoogle ScholarPubMed
Archer, WH, Emerson, RL, Reusach, CS. Quantification of erythrocyte magnesium and potassium using atomic absorption spectrophotometry Anal Lettters 1972 ; 26 : 689707Google Scholar
Avissair, S, Murphy, DL, Schreiber, G. Magnesium reversal of lithium inhibition of beta-adrenergic and muscarinic receptor coupling to G proteins Biochem Pharmacol 1994 ; 1 : 171-5Google Scholar
Aymard, N, Leyris, A, Monier, C, Francès, , Boulu, RG, Henrotte, JG. Brain catecholamines, serotonin and their metabolites in mice selected for low (MgL) and high (MgH) blood magnesium levels Mag Res 1994 : 8 : 59Google Scholar
Bac, P, Pages, N, Herrenknecht, C, Teste, JF. Inhibition of mousekilling behaviour in magnesium-deficient rats: effects of pharmacological doses of magnesium pidolate, magnesium aspartate, magnesium lactate, magnesium gluconate and magnesium chloride Mag Res 1995 ; 8 : 3745Google Scholar
Bobon, DP. Le système AMDP, . Manuel de Documentation et de Quantification de la Psychopathologic Liège: Bobon; 1981Google Scholar
Cotton, DB, Hallak, M, Janusz, C, Irtenkauf, SM, Berman, RF. Central anticonvulsivant effects of magnesium sulfate on Nmethyl- D-aspartate induced seizures Amer J Obstet Gynaecol 1993 ; 974-8CrossRefGoogle Scholar
American Psychiatric Association. DSM IIIR. Diagnostic and Statistical Manual of Mental Disorders. 3rded, revised. Washington, DC: American Psychiatric Press; 1987Google Scholar
Esche, I, Joffe, RT, Blank, DW. Erythrocyte electrolytes in psychiatric illness Acta Psychiat Scand 1988 ; 78 : 695-7CrossRefGoogle ScholarPubMed
Fachinotti, F, Borella, P, Sances, G, Fioroni, L, Nappi, RE, Genazrani, AR. Oral magnesium successfully relieves pre-menstrual mood changes Obsret Gynecol 1991 ; 78 : 177-81Google Scholar
Frazer, A, Ramsey, TA, Swann, A, Bowden, C, Brunswick, D, Garver, D, Secunda, S. Plasma and erythrocyte electrolytes in affective disorders J Affect Dis 1983 ; 5 : 103-13CrossRefGoogle ScholarPubMed
Gueux, E, Duchêne-Marullaz, P, Rayssiguier, Y. Plasma and erythrocyte magnesium levels in a French population Mag Bull 1988 ; 10 : 7780Google Scholar
Hallak, M, Irtenkauf, S, Cotton, DB. Effects of magnesium sulfate on excitatory amino acid receptors in the rat brain Am J Obstet Gynaecol 1996 ; 175 : 575-81CrossRefGoogle ScholarPubMed
Henrotte, JG, Pla, M, Dausset, J. HLA and H-2 associated variations of intra-and extracellular magnesium content Proc Natl Acad Sci USA 1990 ; 87 : 1894-8CrossRefGoogle ScholarPubMed
Henrotte, JG. Genetic regulation of cellular magnesium content In: Birch, NJ ed. Magnesium and the cell London: Academic Press; 1993. p 177-99Google Scholar
Henrotte, JG, Aymard, N, Leyris, A, Monier, C, Francès, H, Boulu, RG. Brain weight and noradrenaline content in mice selected for low (MgL) and high (MgH) blood magnesium Mag Res 1993 ; 6 : 21-4Google ScholarPubMed
Henrotte, JG, Franck, G, Santorromana, M, Francès, H, Mouton, D, Motta, R. Mice selected for low and high blood magnesium levels: a new model for stress studies Physiol Behav 1997 ; 61 : 653-8CrossRefGoogle ScholarPubMed
Joffe, RT, Blanck, DW, Berrettini, WH, Post, RM. Erythrocyte sodium and potassium in affective illness Acta Psychiatr Scand 1986 ; 73 : 416-19CrossRefGoogle ScholarPubMed
Karege, F, Bovier, P, Widmer, J, Gaillard, JM, Tissot, R. Platelet membrane alpha2-adrenergic receptors in depression Psychiat Res 1992 ; 34 : 243-52CrossRefGoogle Scholar
Karege, F, Bovier, P, Stépanian, R, Malafosse, A. The effect of clinical outcome on platelet G proteins of major depressed patients Eur Neuropsycho; in pressGoogle Scholar
Kirov, GK, Tsachev, KN. Magnesium, schizophrenia and manicdepressive disease Neuropsychobiology 1990 ; 23 : 7981CrossRefGoogle Scholar
Kirov, GK, Birch, NJ, Steadman, P, Ramsey, RG. Plasma magnesium levels in a population of psychiatric patients : correlations with symptoms Neuropsychobiology 1994 ; 30 : 73-8CrossRefGoogle Scholar
Knudson, K, Abrahamsson, J. Antiarrhythmic effects of magnesium sulphate. Report of three cases Acta Anaesth Scand 1995 ; 39 : 850-410.1111/j.1399-6576.1995.tb04184.xCrossRefGoogle Scholar
Kojima, S, Kanashiro, M. Intracellular free magnesium of red blood cells in patients with renal diseases Nephron 1992 ; 61 : 8993CrossRefGoogle Scholar
Komhuber, J, Lange, KW, Kruzik, P, Rausch, WD, Gabriel, E, Jellinger, K, Riederer, P. Iron, copper, zinc, magnesium, and calcium in post-mortem brain tissue from schizophrenic patients Biol Psychiat 1994 ; 36 : 31-4CrossRefGoogle Scholar
Lasker, N, Hopp, I, Grossman, S, Bamforth, R, Aviv, A. Race and sex differences in erythrocytes Na+,K+, and Na+-K+ adenosine triposphatase J Clin Invest 1985 ; 75 : 1813-20CrossRefGoogle Scholar
Linder Brismar, K, Beck-Friis, J, Sääf, J, Wettenberg, L. Calcium and magnesium concentrations in affective disorders: differences between plasma and serum in relation to symptoms Acta Psychiat Scand 1989 ; 80 : 527-37CrossRefGoogle Scholar
Mazzoni, MR, Martine, C, Luchacchini, A. Regulation of agonist binding to A2A adenosine receptors: effects of guanine nucleotides and magnesium ions Biochem Biophys Acta 1993 ; 1120 : 7684CrossRefGoogle Scholar
Naylor, GJ, McNamee, HB, Moody, JP. Changes in erythrocyte sodium and potassium on recovery from a depressive illness Br J Psychiat 1971 ; 118 : 219-23CrossRefGoogle ScholarPubMed
Naylor, GJ, Dick, DAT, Dick, EG, Le Poidevin, D, Whyte, SF. Erythrocyte membrane cation carrier in depressive illness Psychol Med 1973 ; 3 : 502-8CrossRefGoogle ScholarPubMed
Osborne-Pellegrin, MJ, Henrotte, JG. The variability of blood pressure in mice selected for low (MgL) and high (MgH) blood magnesium levels Mag Res 1994 ; 8 : 1117Google Scholar
Raman, NV, Rao, CA. Magnesium sulfate as an anticonvulsivant in eclampsia Int J Gynecol Obst 1995 ; 49 : 289-98CrossRefGoogle Scholar
Reddy, PL, Khanna, S, Subhash, MN, Channabasavanna, SM, Sridhara Ramo Rao, BS. Erythrocyte membrane sodium-potassium adenosine triphosphatase activity in affective disorders J Neural Transm 1992 ; 89 : 209-18CrossRefGoogle ScholarPubMed
Resina, A, Brettoni, M, Gatteschi, L, Galvan, P, Orsi, F, Rubenni, MC. Changes in the concentrations of plasma and erythrocytes and of 2,3 diphosphoglycerate during a period of aerobic training Eur J Appl Physiol 1994 ; 68 : 390-4CrossRefGoogle ScholarPubMed
Resnick, LM, Altura, BT, Gupta, RK, Laragh, JH, Alderman, MH, Altura, BM. Intracellular and extracellular magnesium depletion in Type 2 (non-insulin-dependant) diabetes mellitus Diabetol 1993 ; 36 : 767-70CrossRefGoogle Scholar
Ryschon, TW, Rosenstein, DL, Rubinov, DR, Niemela, JE, Elin, RJ, Balaban, RS. Relationship between skeletal muscle intracellular ionized magnesium and measurements of blood magnesium J Lab Clin Med 1996 ; 127 : 207-1310.1016/S0022-2143(96)90080-3CrossRefGoogle ScholarPubMed
Ryzen, E, Servis, KL, Rude, RK. Effects of intravenous epinephrine on serum magnesium and free intracellular red blood cell magnesium concentration measured by nuclear magnetic resonance J Amer Coll Nut 1990 ; 9 : 114-19CrossRefGoogle ScholarPubMed
Schwartz, RD, Wagner, JP, Yu, X, Martin, D. Bidirectionnal modulation of GABA-gated chloride channels by divalent cations: inhibition by Ca++ and enhancement by Mg++ J Neurochem 1994 ; 62 : 916-22CrossRefGoogle Scholar
Singh, RB, Rastogi, SS, Ghost, S MA. Dietary and serum magnesium levels in patients with acute myocardial infarctions, coronary artery disease and noncardiac diagnosis J Amer Coll Nut 1994 ; 13 : 139-43CrossRefGoogle Scholar
Speich, M, Gelot, S, Auget, JL. Plasma and erythrocyte magnesium, calcium, zinc, copper, phosphorus and cholesterol in a population of 1050 healthy adults Mag Bull 1995 ; 17 : 62-8Google Scholar
Tramer, MR, Schneider, J, Marti, RA, Rifat, K. Role of magnesium sulfate in postoperative analgesia Anesthesiol 1996 ; 84 ; 340-7CrossRefGoogle ScholarPubMed
Vormann, J, Günther, T, Perras, B, Rob, PM. Magnesium metabolism in erythrocytes of patients with chronic renal failure and after renal transplantation Eur J Clin Chem Clin Biochem 1994 ; 32 : 901-4Google ScholarPubMed
White, K., Addis, GJ, Whitesmith, R, Reid, JL. Adrenergic control of plasma magnesium in man Clin Science 1987 ; 72 : 135-8CrossRefGoogle Scholar
Widmer, J, Bovier, P, Karege, F, Raffin, Y, Hilleret, H, Gaillard, JM, Tissot, R. Evolution of blood magnesium, sodium and potassium in depressed patients followed for three months Neuropsychobioiogy 1992 ; 26 : 173-9CrossRefGoogle ScholarPubMed
Widmer, J, Stella, N, Raffin, Y, Bovier, P, Gaillard, JM, Hilleret, H, Tissot, R. Blood magnesium, potassium, sodium, calcium, and cortisol in drug-free depressed patients Mag Res 1993 ; 6 : 3341Google ScholarPubMed
Widmer, J, Henrotte, JG, Raffin, Y, Bovier, P. Relationship between erythrocyte magnesium, plasma electrolytes and cortisol, and intensity of symptoms in major depressed patients J Affect Dis 1995 ; 34 ; 201-9CrossRefGoogle ScholarPubMed
Widmer, J, Féray, JC, Bovier, P, Hilleret, H, Raffin, Y, Gaillard, JM, Garay, R. Sodium-magnesium exchange in erythrocyte membranes from patients with affective disorders Neuropsychobiology 1995 ; 32 : 1318CrossRefGoogle ScholarPubMed
Widmer, J, Raffin, Y, Mouthon, D, Chollet, D, Gaillard, JM. Simultaneous measurement of plasma and erythrocyte sodium, potassium and magnesium; plasma calcium; blood platelet magnesium and calcium as a tool in studying peripheral electrolyte status In: Halpem, H ed. Current Research In Magnesium London: John Libbey; 1996. p 1316Google Scholar
Widmer, J, Mouthon, D, Raffin, Y, Chollet, D, Hilleret, H, Malafosse, A, Bovier, P. Weak association between blood sodium, potassium and calcium and intensity of symptoms in major depressed patients Neuropsychobiology 1997; 36: 164-71CrossRefGoogle ScholarPubMed
Yase, M, Yase, Y, Ando, K, Adachi, K, Mukoyama, M, Ohsugi, M. Magnesium concentration in brains from multiple sclerosis patients Acta Neurol Scand 1990 ; 81 : 197200CrossRefGoogle Scholar
Young, LT, Robb, JC, Levitt, AJ, Cooke, RG, Joffe, RT. Serum Mg2+ and Ca2+/Mg2+ ratio in major depressive disorder Neuropsychobiology ; 1996 : 34 : 26-8CrossRefGoogle ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.