Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T20:49:40.794Z Has data issue: false hasContentIssue false

IRMf relacionadas con la respuesta de reconocimiento verdadero y falso de palabras

Published online by Cambridge University Press:  12 May 2020

R. Heun
Affiliation:
Departamento de Psiquiatría, Universidad de Bonn, Sirmund-Freud-Street 25, Venusberg, 53105Bonn, Alemania
F. Jessen
Affiliation:
Departamento de Psiquiatría, Universidad de Bonn, Sirmund-Freud-Street 25, Venusberg, 53105Bonn, Alemania
U. Klose
Affiliation:
Departamento de Neurorradiología, Sección de RMN Experimental del SNC, Universidad de Tubinga, 72026, Alemania
M. Erb
Affiliation:
Departamento de Neurorradiología, Sección de RMN Experimental del SNC, Universidad de Tubinga, 72026, Alemania
D.O. Granath
Affiliation:
Departamento de Psiquiatría, Universidad de Bonn, Sirmund-Freud-Street 25, Venusberg, 53105Bonn, Alemania
W. Grodd
Affiliation:
Departamento de Neurorradiología, Sección de RMN Experimental del SNC, Universidad de Tubinga, 72026, Alemania
Get access

Resumen

Objetivo.

Los estudios sobre la relación entre la activación cerebral local y el éxito de la recuperación comparaban por lo general condiciones de rendimiento alto y bajo, y mostraban así la activación relacionada con la actuación de áreas cerebrales diferentes. Sólo algunos estudios compararon directamente las intensidades de señal de categorías de respuesta diferentes durante la recuperación. Durante el reconocimiento verbal, observamos hace poco aumento de la activación parieto-occipital relacionado con las falsas alarmas. El presente estudio pretende replicar y extender esta observación investigando la activación común y diferencial según el reconocimiento verdadero y falso.

Métodos.

Quince voluntarios sanos llevaron a cabo un paradigma de reconocimiento verbal utilizando 160 palabras diana aprendidas y 160 palabras distractoras nuevas. Los sujetos tenían que indicar si habían aprendido la palabra antes o no. Se realizaron IRM ecoplanares de los cambios de señal dependientes del nivel de oxígeno en la sangre durante esta tarea de reconocimiento. Las palabras se clasificaron post hoc según las respuestas de los sujetos, es decir, aciertos, falsas alarmas, rechazos correctos y omisiones. Se utilizó el análisis de IRMf relacionadas con la respuesta para comparar la activación asociada con el éxito del reconocimiento de los sujetos, es decir, se comparó las intensidades de la señal relacionadas con la presentación de las palabras según los cuatro tipos de respuesta mencionados más arriba.

Resultados.

Durante el reconocimiento, todas las categorías de palabras mostraron un aumento de la activación bilateral del giro frontal inferior, el giro temporal inferior, el lóbulo occipital y el tronco encefálico en comparación con la condición de control. Los aciertos y las falsas alarmas activaron varias áreas, incluida la corteza medial izquierda y la corteza parieto-occipital lateral, en comparación con los elementos desconocidos subjetivamente, es decir, los rechazos correctos y las omisiones. Los aciertos mostraron una activación más pronunciada en la corteza medial y las falsas alarmas, en las partes laterales de la corteza parieto-occipital izquierda.

Conclusiones.

El reconocimiento verdadero y falso muestra áreas tanto comunes como diferentes de activación cerebral en el lóbulo parieto-occipital izquierdo: el aumento de activación de la corteza parietal medial por los aciertos puede corresponder al reconocimiento verdadero, el aumento de activación de la corteza parieto-occipital por las falsas alarmas puede corresponder a decisiones de familiaridad. Se necesitan más estudios para investigar las razones para las decisiones falsas en sujetos sanos y pacientes con problemas de memoria.

Type
Artículo original
Copyright
Copyright © European Psychiatric Association 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografía

Andreasen, N.C., O'Leary, D.S., Arndt, S., Cizadlo, T., Hurtig, R., Rezai, K., et al. Short-term and long-term verbal memory. A positron emission tomography study. Proceedings of the National Academy of Science USA 1995;92:5111–5.CrossRefGoogle ScholarPubMed
Baschek, I.L., Bredenkamp, J., Oehrle, B., Wippich, W., Bestimmung der Bildhaftigkeit (I), Konkretheit (C) und der Bedeutungshaltigkeit (m') von 800 Substantiven. Zeitschrift fur experimentelle angewandte Psy-chologie 1977;24:353–96.Google Scholar
Bookheimer, S.Y., Zeffiro, T.A., Blaxton, T., Gaillard, W., Theodore, W., Regional cerebral blood flow during object naming and word reading. Human Brain Mapping 1995;3:93-106.CrossRefGoogle Scholar
Brewer, J.B., Zhao, Z., Desmond, J.E., Glover, G.H., Gabrieli, J.D.E., Making memories: brain activity that predicts how well visual experience will beremembered. Science 1998;281:1185–7.CrossRefGoogle Scholar
Buckner, R.L., Koutstaal, W., Schacter, D.L., Dale, A.M., Rotte, M., Rosen, B.R., Functional-anatomic study of episodic retrieval. II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis. Neuroimage 1998;7:163–75.CrossRefGoogle ScholarPubMed
Buckner, R.L., Koutstaal, W., Schacter, D.L., Wagner, A.D., Rosen, B.R., Functional-anatomic study of episodic retrieval using fMRI. I. Retrieval effort versus retrieval success. Neuroimage 1998;7:151–62.CrossRefGoogle ScholarPubMed
Busatto, G., Howard, R.J., Ha, Y., Brammer, M., Wright, I., Woodruff, P.W.R., et al. A functional magnetic resonance imaging study of episodic memory. Neuro Report 1997;8:2671–5.Google ScholarPubMed
Cabeza, R., Nyberg, L., Imaging cognition II: an empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience 2000;12:1-47.CrossRefGoogle ScholarPubMed
Fletcher, P.C., Frith, C.D., Grasby, P.M., Shallice, T., Frackowiak, RSJ, Dolan, RJ., Brain systems for encoding and retrieval of auditory-verbal memory. An in vivo study in humans. Brain 1995;118:401–16.CrossRefGoogle Scholar
Fletcher, P.C., Frith, C.D., Rugg, M.D., The functional neuroanatomy of episodic memory. Trends in Neuroscience 1997;20:213–8.CrossRefGoogle ScholarPubMed
Fletcher, P.C., Shallice, T., Frith, C.D., Frackowiak, RSJ, Dolan, RJ., The functional roles of prefrontal cortex in episodic memory. II. Retrieval Brain 1998;121:1249–56.Google ScholarPubMed
Friston, K.J., Statistical parametric mapping and other analyses of functional imaging data. In: Toga, A.W., Mazziotta, J.C., editors. Brain mapping. The methods. San Diego, New York: Academic Press; 1996. p. 363–86.Google Scholar
Friston, K.J., Josephs, O., Rees, G., Turner, R., Nonlinear event-related responses in fMRI. Magnetic Resonance in Medicine 1998;39:41-52.CrossRefGoogle ScholarPubMed
Gabrieli, J.D.E., Brewer, J.B., Desmond, J.E., Glover, G.H., Separate neural bases of 2 fundamental memory processes in the human medial - temporal lobe. Science 1997;276:264–6.CrossRefGoogle Scholar
Gonsalves, B., Paller, K.A., Neural events that Underlie remembering something that nevar happened. Nature Neuroscience 1997:3131-621.Google Scholar
Grasby, P.M., Frith, C.D., Friston, K.J., Bench, C., Frackowiak, R.S.J., Dolan, R.J., Functional mapping of brain areas implicated in auditory—verbal memory function. Brain 1993;116:1-20.CrossRefGoogle ScholarPubMed
Grasby, P.M., Frith, C.D., Friston, K.J., Simpson, J., Fletcher, P.C., Frackowiak, RSJ, et al. A graded task approach to the functional mapping of brain areas implicated in auditory-verbal memory. Brain 1994;117: 1271–82.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Kushnir, K., Edelman, T., Itzchak, S., Malach, Y.R., Cue-invariant activation in object-related areas of the human occipital lote. Neuron 1998;21:191-201.CrossRefGoogle Scholar
Grill-Spector, K., Kushnir, T., Hendler, T., Malach, R., The dynamics of object-selective activation correlate with recognition performance in humans. Nature Neuroscience 2000;3:837–43.CrossRefGoogle Scholar
Haxby, J.V., Ungerleider, L.G., Horwitz, B., Maisog, J.M., Rapoport, S.I., Grady, C.L., Face encoding and recognition in the human brain. Proceedings of the National Academy of Sciences USA 1996;93:922–7.CrossRefGoogle ScholarPubMed
Henson, RNA, Rugg, M.D., Josephs, O., Dolan, RJ., Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. The Journal of Neuroscience 1999;10:3962–72.CrossRefGoogle Scholar
Henson, RNA, Rugg, M.D., Shallice, T., Dolan, R.J., Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. Journal of Cognitive Neuroscience 2000;12:913–23.CrossRefGoogle ScholarPubMed
Heun, R., Jessen, F., Klose, U., Erb, M., Granath, D.-O., GrodiJ, W., Response related fMRI analysis during encoding and retrieval revealed differences in cerebral activation by retrieval success. Psychiatry Research: Neuroimaging 2000;99:137–50.CrossRefGoogle ScholarPubMed
Heun, R., Klose, U., Jessen, F., Erb, M., Papassotiropoulos, A., Lotze, M., et al. Functional MRI of cerebral activation during encoding and retrieval of words. Human Brain Mapping 1999;8:157–69.3.0.CO;2-G>CrossRefGoogle Scholar
Hirano, S., Kojima, H., Naito, Y., Honjo, I., Cortical speech processing mechanisms while vocalizing visually-presented languages. Neuroreport 1996;8:363–7.CrossRefGoogle ScholarPubMed
Iidaka, T., Sadato, N., Yamada, H., Yonekura, Y., Functional asymmetry of human prefrontal cortex in verbal and non-verbal episodic memory as revealed by fMRI. Cognitive Brain Research 2000;9:73-83.CrossRefGoogle ScholarPubMed
Jacoby, L.L., A process dissociation framework: separating automatic from intentional uses of memory. Journal of Memory and Language 1991;30:513–41.CrossRefGoogle Scholar
Kanwisher, N., McDermott, J., Chan, M.M., The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 1997;11:4302–11.CrossRefGoogle Scholar
Klose, U., Erb, M., Wildgruber, D., Muller, E., Grodd, W., Improvement of the acquisition of large amount of mr-images on a conventional whole body system. Magnetic Resonante Imaging 1999;17:471–4.CrossRefGoogle ScholarPubMed
Konishi, S., Wheeler, M.E., Donaldson, D.I., Buckner, R.L., neural correlates of episodic retrievalo success. Neuroimage 2000;12:276–86.CrossRefGoogle ScholarPubMed
Kopelman, M.D., Stevens, T.G., Foli, S., Grasby, R., PET activation of the medial temporal lobe in learning. Brain 1998;121:875–87.CrossRefGoogle Scholar
Le Bihan, D., Turner, R., Zeffiro, T.A., Cuenod, C.A., Jezzard, P., Bonnerot, V.Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proceedings of the National Academy of Science USA 1993;90:11802-5.CrossRefGoogle ScholarPubMed
LeCompte, D.C., Recollective experience in the revelation effect: separating the contributions of recollection and familiarity. Memory & Cognition 1995;23:324–34.CrossRefGoogle ScholarPubMed
Lepage, M., Ghaffar, O., Nyberg, L., Tulving, E., Prefrontal cortex and episodic memory retrieval mode. Proceedings of the National Academy of Science USA 2000;97:506–11.CrossRefGoogle ScholarPubMed
Maguire, E.A., Frith, C.D., Morris, R.G.M., The functional neuroanatomy of comprehension and memory: the importance of prior knowledge. Brain 1999;122:1839–50.CrossRefGoogle ScholarPubMed
Maguire, E.A., Mummery, C.J., Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus 1999;9:54-61.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Malach, R., Reppas, J.B., Benson, R.R., Kwong, K.K., Jiang, H., Kennedy, W.A., et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Science USA 1995;2:8135–9.CrossRefGoogle Scholar
Mark, R.E., Rugg, M.D., Age effects on brain activity associated with episodic memory retrieval. An electrophysiological study. Brain 1998;121:861–73.CrossRefGoogle ScholarPubMed
Markowitsch, H.J., Calabrese, P., Fink, G.R., Durwen, H.F., Kessler, J., Har-ting, C., et al. Impaired episodic memory retrieval in a case of probable psychogenic amnesia. Psychiatry Research: Neuroimaging Section 1997;74:119–26.CrossRefGoogle Scholar
Mather, M., Henkel, L.A., Johnson, M.K., Evaluating characteristics of false memories: remember/know judgments and memory characteristics questionnaire compared. Memory & Cognition 1997;25:826–37.CrossRefGoogle ScholarPubMed
McIntosh, A.R., Nyberg, L., Bookstein, F.L., Tulving, E., Differential functional connectivity o f prefrontal and medial temporal cortices during episodic memory retrieval. Human Brain Mapping 1997;5:323–7.3.0.CO;2-D>CrossRefGoogle Scholar
Norman, K.A., Schacter, D.L., False recognition in younger and older adults: exploring the characteristics of illusory memorias. Memory & Cognition 1997;25:838–48.CrossRefGoogle Scholar
Nyberg, L., McIntosh, A.R., Houle, S., Nilsson, L.-G., Tulving, E., Activation of medial temporal structures during episodic memory retrieval. Nature 1996;380:715–7.CrossRefGoogle ScholarPubMed
Ojemann, J.G., Buckner, R.L., Corbetta, M., Raichle, M.E., Imaging studies of memory and attention. Neurosurgery Clinics of North America 1997;8:307–19.CrossRefGoogle ScholarPubMed
Oidfield, R.C., The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971;9:97-113.CrossRefGoogle Scholar
Oldigs-Kerber, J., Adamus, W.S., Kitzinger, M., Zur Beeinflussung von vertalen Lem- und Gedachtnisprozessen durch Anticholinergica am Beispiel von Scopolamin. Ein pharmakopsychologischer Beitrag fiir die neuropsychologische Praxis. Zeitschrift für Neuropsychologie 1991;2:29-40.Google Scholar
Osherson, D., Perani, D., Cappa, S., Schnur, T., Grassi, F., Fazio, F., Distinct brain loci in deductive versus probabilistic reasoning. Neuropsychologia 1998;36:369–76.CrossRefGoogle ScholarPubMed
Otten, L.J., Henson, RNA, Rugg, M.D., Depth of processing effects on neural correlates of memory encoding. Relationship between findings from across- and within-task comparisons. Brain 2001;124:399-412.CrossRefGoogle ScholarPubMed
Perry, E., Walker, M., Grate, J., Perry, R., Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends in Neuroscience 1999;22:273–80.CrossRefGoogle Scholar
Petrides, M., Visuo-motor conditional associative learning after frontal and temporal lesions in the human brain. Neuropsychologia 1997;35: 989–97.CrossRefGoogle ScholarPubMed
Petrides, M., Specialized systems for the processing of mnemonic information within the primate frontal cortex. Philosophical Transactions of the Royal Society of London B 1996;351:1455–62.Google ScholarPubMed
Price, C.J., Friston, KJ., Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 1997;5:261–70.CrossRefGoogle ScholarPubMed
Ragland, J.D., Gur, R.C., Lazarev, M.G., Smith, R.J., Schroeder, L., Raz, J., et al. Hemispheric activation of anterior and inferior prefrontal cortex during verbal encoding and recognition: a PET study of healthy volunteers. Neuroimage 2000;11:624–33.CrossRefGoogle ScholarPubMed
Riddle, W., O'Carroll, R.E., Dougall, N., Van Beck, M., Murray, C., Curran, S.M., et al. A single photon emission computerised tomography study of regional brain function underlying verbal memory in patients with Alzheimer-type dementia. British Journal of Psychiatry 1993;163: 166–72.CrossRefGoogle ScholarPubMed
Rosen, B.R., Buckner, R.L., Dale, A.M., Event-related functional MRI: past, present, and future. Proceedings of the National Academy of Science USA 1998;95:773–80.CrossRefGoogle ScholarPubMed
Rugg, M.D., Fletcher, P.C., Frith, C.D., Frackowiak, RSJ, Dolan, R.J., Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval. Brain 1996;119:2073–83.CrossRefGoogle ScholarPubMed
SakuraiY, Momose, T., Iwata, M., Watanabe, T., Semantic process in kana word reading: activation studies with positron emission tomography. Neuroreport 1993;4:327–30.Google Scholar
Saykin, A.J., Johnson, S.C., Flashman, L.A., McAllister, T.W., Sparling, M., Darcey, T.M., et al. Functional differentiation of medial temporal and frontal regions involved in processing novel and familiar words: an fMRI study. Brain 1999;122:1963–71.CrossRefGoogle Scholar
Schacter, D.L., Illusoiy memories: a cognitive neuroscience analysis. Proceedings of the National Academy of Science USA 1996;93:13527-33.CrossRefGoogle ScholarPubMed
Schacter, D.L., Alpert, N.M., Savage, C.R., Rauch, S.L., Alberts, M.S., Conscious recollection and the human hippocampal formation: evidence from positron emission tomography. Proceedings of the National Academy of Science USA 1996;3:321–5.CrossRefGoogle Scholar
Schacter, D.L., Buckner, R.L., Koutstaal, W., Dale, A.M., Rosen, B.R., Late onset of anterior prefrontal activity during true and false recognition: an event-related fMRI study. Neuroimage 1997;6:259–69.CrossRefGoogle ScholarPubMed
Schacter, D.L., Koutstaal, W., Johnson, M.K., Gross, M.S., Angell, K.E., False recollection induced by photographs: a comparison of older and younger adults. Psychology and Aging 1997;12:203–15.CrossRefGoogle ScholarPubMed
Schacter, D.L., Reiman, E., Curran, T., Yun, L.S., Bandy, D., McDermott, K.B., et al. Neuroanatomical correlates of veridical and illusory recognition memory: evidence from positron emission tomography. Neuron 1996;17:267–74.CrossRefGoogle ScholarPubMed
Schacter, D.L., Reiman, E., Uecker, A., Polster, M.R., Yun, L.S., Cooper, A.L., Brain regions associated with retrieval of structurally coherent visual information. Nature 1995;376:587–90.CrossRefGoogle ScholarPubMed
Sewards, T.V., Sewards, M.A., Visual awareness due to neuronal activities in subcortical structures: a proposal. Consciousness and Cognition 2000;9:86-116.CrossRefGoogle ScholarPubMed
Shallice, T., Fletcher, P., Frith, C.D., Grasby, P., Frackowiak, R.S.J., Dolan, R.J., Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 1994;368:633–5.CrossRefGoogle ScholarPubMed
Stark, C.E.L., Squire, L.R., fMRI activity in the medial temporal lobe during recognition memory as a function of study-test interval. Hippocampus 2000;10:329–37.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Stark, CEL, Squire, L.R., Functional magnetic resonance imaging (fMRI) activity in the hippocampal region during recognition memory. The Journal of Neuroscience 2000;20:7776–81b.CrossRefGoogle ScholarPubMed
Tulving, E., Habib, R., Nyberg, L., Lepage, M., McIntosh, A.R., Positron emission tomography correlations in and beyond medial temporal lobes. Hippocampus 1999;9:71-82.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Tulving, E., Kapar, S., Markowitsch, H.J., Craik, F.I.M., Habib, R., Houle, S., Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proceedings of the National Academy of Science 1994;91:2012–5.CrossRefGoogle ScholarPubMed
Tulving, E., Markowitsch, H.J., Craik, F.I.M., Habib, R., Houle, S., Novelty and familiarity activations in PET studies of memory encoding and retrieval. Cerebral Cortex 1996;6:71–9.CrossRefGoogle ScholarPubMed
Wagner, A.D., Schacter, D.L., Rotte, M., Koutstaal, W., Maril, A., Dale, A.M., et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 1998;281:1188–91.CrossRefGoogle ScholarPubMed
Warburton, E., Wise, R.J.S., Price, C.J., Weiller, C., Hadar, I.J., Ramsay, S., Frackowiak, R.S.J., Noun and verb retrieval by normal subjects. Studies with PET. Brain 1996;119:159–79.CrossRefGoogle ScholarPubMed
Yonelinas, A.P., Jacoby, L.L., Noncriterial recollection: familiarity as automatic irrelevant recollection. Consciousness and Cognition 1996;5:131–41.CrossRefGoogle ScholarPubMed