Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T02:45:45.635Z Has data issue: false hasContentIssue false

Mass transport in Fokker–Planck equations with tilted periodic potential

Published online by Cambridge University Press:  30 September 2019

MICHAEL HERRMANN
Affiliation:
Institute of Computational Mathematics, Technische Universität Braunschweig Universitätsplatz 2, 38106 Braunschweig, Germany email: michael.herrmann@tu-braunschweig.de
BARBARA NIETHAMMER
Affiliation:
Institute of Applied Mathematics, University of Bonn Endenicher Allee 60, 53115 Bonn, Germany email: niethammer@iam.uni-bonn.de

Abstract

We consider Fokker–Planck equations with tilted periodic potential in the subcritical regime and characterise the spatio-temporal dynamics of the partial masses in the limit of vanishing diffusion. Our convergence proof relies on suitably defined substitute masses and bounds the approximation error using the energy-dissipation relation of the underlying Wasserstein gradient structure. In the appendix, we also discuss the case of an asymmetric double-well potential and derive the corresponding limit dynamics in an elementary way.

Type
Papers
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrosio, L., Gigli, N. & Savaré, G. (2008) Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, 2nd ed., Birkhäuser Verlag, Basel.Google Scholar
Arnrich, S., Mielke, A., Peletier, M. A., Savaré, G. & Veneroni, M. (2012) Passing to the limit in a Wasserstein gradient flow: From diffusion to reaction. Calc. Var. Part. Diff. Eq. 44(3–4).CrossRefGoogle Scholar
Bender, C. M. & Orszag, S. A. (1999) Advanced Mathematical Methods for Scientists and Engineers. I. Springer-Verlag, New York. Asymptotic methods and perturbation theory, Reprint of the 1978 original.CrossRefGoogle Scholar
Berglund, N. (2013) Kramers’ law: validity, derivations and generalisations. Markov Process. Related Fields 19(3), 459490.Google Scholar
Blanchet, A., Dolbeault, J. & Kowalczyk, M. (2009) Stochastic Stokes drift, homogenized functional inequalities, and large time behavior of Brownian ratchets. SIAM J. Math. Anal. 41(1), 4676.CrossRefGoogle Scholar
Bovier, A., Eckhoff, M., Gayrard, V. & Klein, M. (2004) Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. (JEMS) 6(4), 399424.CrossRefGoogle Scholar
Cheng, L. & Yip, N. K. (2015) The long-time behavior of Brownian motion in tilted periodic potentials. Phys. D 297, 132.CrossRefGoogle Scholar
Collet, P. & Martinez, S. (2008) Asymptotic velocity of one dimensional diffusions with periodic drift. J. Math. Biol. 56, 765792.CrossRefGoogle ScholarPubMed
Denisova, S., Hänggi, P. & Mateos, J. L. (2009) AC-driven Brownian motors: A Fokker-Planck treatment. Am. J. Phys. 77(7), 602606.CrossRefGoogle Scholar
Evans, L. C. & Tabrizian, P. R. (2016) Asymptotics for scaled Kramers-Smoluchowski equations. SIAM J. Math. Anal . 48(4), 29442961.CrossRefGoogle Scholar
Friedman, A. (1964) Partial Differential Equations of Parabolic Type. Prentice-Hall, Inc., Englewood Cliffs, N.J. reprinted 2008 by Dover Publications.Google Scholar
Hairer, M. & Pavliotis, G. A. (2008) From ballistic to diffusive behavior in periodic potentials. J. Stat. Phys. 131(1), 175202.CrossRefGoogle Scholar
Herrmann, M. & Niethammer, B. (2011) Kramers’ formula for chemical reactions in the context of Wasserstein gradient flows. Commun. Math. Sci. 9(2), 623635.CrossRefGoogle Scholar
Herrmann, M., Niethammer, B. & Velázquez, J. J. L. (2012). Kramers and non-Kramers phase transitions in many-particle systems with dynamical constraint. Multiscale Model. Simul . 10(3), 818852.CrossRefGoogle Scholar
Herrmann, M., Niethammer, B. & Velázquez, J. J. L. (2014) Rate-independent dynamics and Kramers-type phase transitions in nonlocal Fokker-Planck equations with dynamical control. Arch. Ration. Mech. Anal. 124(3), 803866.CrossRefGoogle Scholar
Jordan, R., Kinderlehrer, D. & Otto, F. (1997) Free energy and the Fokker-Planck equation. Phys. D 107(2–4), 265271. Landscape Paradigms in Physics and Biology (Los Alamos, NM, 1996).CrossRefGoogle Scholar
Jordan, R., Kinderlehrer, D. & Otto, F. (1998) The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal . 29(1), 117.CrossRefGoogle Scholar
Kramers, H. A. (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284304.CrossRefGoogle Scholar
Latorre, J. C., Pavliotis, G. A. & Kramer, P. R. (2013) Corrections to Einstein’s relation for Brownian motion in a tilted periodic potential. J. Stat. Phys. 150(4), 776803.CrossRefGoogle Scholar
Lindner, B., Kostur, M. & Schimansky-Geier, L. (2001) Optimal diffusive transport in a tilted periodic potential. Fluct. Noise Lett. 1(1), R25R39.CrossRefGoogle Scholar
Menz, G. & Schlichting, A. (2014) Poincaré and logarithmic Sobolev inequalities by decomposition of the energy landscape. Ann. Probab. 42(5), 18091884.CrossRefGoogle Scholar
Michel, L. & Zworski, M. (2017) A semiclassical approach to the Kramers-Smoluchowski equation. preprint arXiv:1703.07460.Google Scholar
Mirrahimi, S. & Souganidis, P. E. (2013) A homogenization approach for the motion of motor proteins. NoDEA Nonlinear Diff. Equations Appl . 20(1), 129147.CrossRefGoogle Scholar
Peletier, M. A., Savaré, G. & Veneroni, M. (2010). From diffusion to reaction via -convergence. SIAM J. Math. Anal. 42(4).CrossRefGoogle Scholar
Perthame, B. & Souganidis, P. E. (2009) Asymmetric potentials and motor effect: A homogenization approach. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(6), 20552071.CrossRefGoogle Scholar
Reimann, P., Van den Broeck, C., Linke, H., Hänggi, P., Rubi, J. M. & Pérez-Madrid, A. (2002) Diffusion in tilted periodic potentials: Enhancement, universality, and scaling. Phys. Rev. E 65(3), 031104, 116.CrossRefGoogle Scholar
Risken, H. (1989) The Fokker-Planck Equation, vol. 18, Springer Series in Synergetics, 2nd ed. Springer-Verlag, Berlin. Methods of solution and applications.Google Scholar
Rodenhausen, H. (1989). Einstein’s relation between diffusion constant and mobility for a diffusion model. J. Statist. Phys. 55(5–6), 10651088.CrossRefGoogle Scholar
Sancho, J. M. & Lacasta, A. M. (2010). The rich phenomenology of brownian particles in nonlinear potential landscapes. Eur. Phys. J. Spec. Top. 187(1), 4962.CrossRefGoogle Scholar
Villani, C. (2009) Optimal Transport, vol. 338. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin. Old and new.Google Scholar