Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T09:12:45.715Z Has data issue: false hasContentIssue false

Renal impact of fluid management with colloids: a comparative review

Published online by Cambridge University Press:  24 May 2006

I. J. Davidson
Affiliation:
The University of Texas Southwestern Medical Center at Dallas, Division of Surgical Transplantation, Dallas, Texas, USA
Get access

Abstract

Summary

Background and objectives: Colloids such as hydroxyethyl starch (HES), gelatin, dextran and albumin are useful for maintaining renal perfusion and function. The comparative renal effects of colloids have not been previously reviewed. Methods: Computer searches of the MEDLINE and EMBASE bibliographic databases and the Cochrane Library were conducted using the search terms: colloids; hetastarch; gelatin; dextrans; serum albumin; kidney failure; cardiac surgical procedures; and kidney transplantation. Relevant studies were also sought through hand searching and examination of reference lists. Results of identified studies were qualitatively summarized with account taken for potential confounding factors. Results: The three artificial colloids HES, gelatin and dextran all exhibited troublesome renal side-effects. Randomized trials have demonstrated adverse renal effects of HES in sepsis and surgery. Undesirable renal effects are common to all available HES solutions regardless of molecular weight, substitution or C2/C6 ratio. While some of its effects may be less severe than those of HES, gelatin also can adversely affect the kidney. A negative renal impact of dextran is well-established, although this colloid is now less extensively used than formerly. As the normal endogenous colloid, albumin exhibits a wide margin of renal safety, although albumin overdose needs to be avoided. Albumin also appears to exert protective effects on the kidney such as inhibition of apoptosis and scavenging of reactive oxygen species. Conclusions: Colloids display important differences in their actions on the kidney. These contrasting renal effects should be considered in making fluid management decisions.

Type
Review
Copyright
2006 European Society of Anaesthesiology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rackow EC, Falk JL, Fein IAet al. Fluid resuscitation in circulatory shock: a comparison of the cardiorespiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 1983; 11: 839850.Google Scholar
Lang JrJD, Figueroa M, Chumley Pet al. Albumin and hydroxyethyl starch modulate oxidative inflammatory injury to vascular endothelium. Anesthesiology 2004; 100: 5158.Google Scholar
Evans TW. Review article: albumin as a drug – biological effects of albumin unrelated to oncotic pressure. Aliment Pharmacol Therap 2002; 16 (Suppl 5): 611.Google Scholar
Birn H, Fyfe JC, Jacobsen Cet al. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. J Clin Invest 2000; 105: 13531361.Google Scholar
Metcalf W, Papadopoulos A, Tufaro R, Barth A. A clinical physiologic study of hydroxyethyl starch. Surg Gynecol Obstet 1970; 131: 255267.Google Scholar
Boutros AR, Ruess R, Olson L, Hoyt JL, Baker WH. Comparison of hemodynamic, pulmonary, and renal effects of use of three types of fluids after major surgical procedures on the abdominal aorta. Crit Care Med 1979; 7: 913.Google Scholar
Wiedermann CJ. Renal impairment in cardiac surgery patients receiving hydroxyethyl starch. Intens Care Med 2004; 30: 519520; author reply 521.Google Scholar
Boldt J, Priebe HJ. Intravascular volume replacement therapy with synthetic colloids: is there an influence on renal function? Anesth Analg 2003; 96: 376382.Google Scholar
Groeneveld ABJ. Albumin and artificial colloids in fluid management: where does the clinical evidence of their utility stand? Crit Care 2000; 4 (Suppl 2): S16S20.Google Scholar
Barron ME, Wilkes MM, Navickis RJ. A systematic review of the comparative safety of colloids. Arch Surg 2004; 139: 552563.Google Scholar
Dehne MG, Muhling J, Sablotzki A, Papke G, Kuntzsch U, Hempelmann G. Einfluβ von Hydroxyethylstärke-Lösung auf die Nierenfunktion bei operativen Intensivpatienten. Anästhesiol Intensivmed Notfallmed Schmerzther 1997; 32: 348354.Google Scholar
Dehne MG, Muhling J, Sablotzki A, Dehne K, Sucke N, Hempelmann G. Hydroxyethyl starch (HES) does not directly affect renal function in patients with no prior renal impairment. J Clin Anesth 2001; 13: 103111.Google Scholar
Köhler H, Kirch W, Vogt J, Höffler D. Pharmakokinetik von Hydroxyäthylstärke bei Niereninsuffizienz. Verh Dtsch Ges Inn Med 1977; 83: 16761678.Google Scholar
Köhler H, Kirch W, Klein H, Distler A. Die Volumenwirkung von 6% Hydroxyäthylstärke 450/0,7, 10% Dextran 40 und 3,5% isozyanatvernetzter Gelatine bei Patienten mit terminaler Niereninsuffizienz. Anaesthesist 1978; 27: 421426.Google Scholar
Boldt J, Brenner T, Lehmann A, Lang J, Kumle B, Werling C. Influence of two different volume replacement regimens on renal function in elderly patients undergoing cardiac surgery: comparison of a new starch preparation with gelatin. Intens Care Med 2003; 29: 763769.Google Scholar
Dehne MG, Sablotzki A, Muhling J, Papke G, Kuntzsch U, Hempelmann G. Akutes Nierenversagen: noninvasive Frühdiagnostik des akuten Nierenversagens bei operativen Intensivepatienten. Anaesthesist 1998; 47: 193201.Google Scholar
Neff TA, Doelberg M, Jungheinrich C, Sauerland A, Spahn DR, Stocker R. Repetitive large-dose infusion of the novel hydroxyethyl starch 130/0.4 in patients with severe head injury. Anesth Analg 2003; 96: 14531459.Google Scholar
Winkelmayer WC, Avorn J. Stable creatinine clearance using large-dose HES versus reduced GFR. Kidney Int 2004; 65: 11111112.Google Scholar
Lucas CE, Weaver D, Higgins RF, Ledgerwood AM, Johnson SD, Bouwman DL. Effects of albumin versus non-albumin resuscitation on plasma volume and renal excretory function. J Trauma 1978; 18: 564570.Google Scholar
Ginès P, Arroyo V, Quintero Eet al. Comparison of paracentesis and diuretics in the treatment of cirrhotics with tense ascites. Results of a randomized study. Gastroenterology 1987; 93: 234241.Google Scholar
Ginès P, Titó L, Arroyo Vet al. Randomized comparative study of therapeutic paracentesis with and without intravenous albumin in cirrhosis. Gastroenterology 1988; 94: 14931502.Google Scholar
Himpe D, van Cauwelaert P, Neels Het al. Priming solutions for cardiopulmonary bypass: comparison of three colloids. J Cardiothorac Vasc Anesth 1991; 5: 457466.Google Scholar
Stockwell MA, Scott A, Day A, Riley B, Soni N. Colloid solutions in the critically ill. A randomised comparison of albumin and polygeline 2. Serum albumin concentration and incidences of pulmonary oedema and acute renal failure. Anaesthesia 1992; 47: 79.Google Scholar
Boldt J, Knothe C, Schindler E, Hammermann H, Dapper F, Hempelmann G. Volume replacement with hydroxyethyl starch solution in children. Brit J Anaesth 1993; 70: 661665.Google Scholar
Pockaj BA, Yang JC, Lotze MTet al. A prospective randomized trial evaluating colloid versus crystalloid resuscitation in the treatment of the vascular leak syndrome associated with interleukin-2 therapy. J Immunother 1994; 15: 2228.Google Scholar
Tomita H, Ito U, Tone O, Masaoka H, Tominaga B. High colloid oncotic therapy for contusional brain edema. Acta Neurochir Suppl 1994; 60: 547549.Google Scholar
Cittanova ML, Leblanc I, Legendre C, Mouquet C, Riou B, Coriat P. Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet 1996; 348: 16201622.Google Scholar
Altman C, Bernard B, Roulot D, Vitte RL, Ink O. Randomized comparative multicenter study of hydroxyethyl starch versus albumin as a plasma expander in cirrhotic patients with tense ascites treated with paracentesis. Eur J Gastroenterol Hepatol 1998; 10: 510.Google Scholar
Fliser D, Zurbruggen I, Mutschler Eet al. Coadministration of albumin and furosemide in patients with the nephrotic syndrome. Kidney Int 1999; 55: 629634.Google Scholar
Kumle B, Boldt J, Piper S, Schmidt C, Suttner S, Salopek S. The influence of different intravascular volume replacement regimens on renal function in the elderly. Anesth Analg 1999; 89: 11241130.Google Scholar
Sort P, Navasa M, Arroyo Vet al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. New Engl J Med 1999; 341: 403409.Google Scholar
Na KY, Han JS, Kim YSet al. Does albumin preinfusion potentiate diuretic action of furosemide in patients with nephrotic syndrome? J Korean Med Sci 2001; 16: 448454.Google Scholar
Schortgen F, Lacherade JC, Bruneel Fet al. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 2001; 357: 911916.Google Scholar
Trull A, Hughes V, Cooper Det al. Influence of albumin supplementation on tacrolimus and cyclosporine therapy early after liver transplantation. Liver Transpl 2002; 8: 224232.Google Scholar
Fenger-Eriksen C, Hartig Rasmussen C, Kappel Jensen Tet al. Renal effects of hypotensive anaesthesia in combination with acute normovolaemic haemodilution with hydroxyethyl starch 130/0.4 or isotonic saline. Acta Anaesthesiol Scand 2005; 49: 969974.Google Scholar
Fernández J, Monteagudo J, Bargallo Xet al. A randomized unblinded pilot study comparing albumin versus hydroxyethyl starch in spontaneous bacterial peritonitis. Hepatology 2005; 42: 627634.Google Scholar
O'Reilly DS, Parry ES, Whicher JT. The effects of arginine, dextran and Haemaccel infusions on urinary albumin, β2-microglobulin and N-acetyl-β-d-glucosaminidase. Clin Chim Acta 1986; 155: 319327.Google Scholar
Dawidson I, Coorpender L, Drake Det al. Intraoperative albumin improves the outcome of cadaver renal transplantation. Transplant Proc 1987; 19: 41374139.Google Scholar
Dawidson I, Peters P, Sagalowsky A, Abshier D, Coorpender L. The effect of intraoperative fluid management on the incidence of acute tubular necrosis. Transplant Proc 1987; 19: 20562057.Google Scholar
Inoue M, Okajima K, Itoh Ket al. Mechanism of furosemide resistance in analbuminemic rats and hypoalbuminemic patients. Kidney Int 1987; 32: 198203.Google Scholar
Lazard T, Deswartes-Pipien I, Tenenhaus Det al. Protéinurie après perfusion de gélatine: comparaison entre Plasmion® et Haemaccel®. Therapie 1989; 44: 269274.Google Scholar
Bergonzi G, Paties C, Vassallo Get al. Dextran deposits in tissues of patients undergoing haemodialysis. Nephrol Dial Transplant 1990; 5: 5458.Google Scholar
Willms CD, Dawidson IJ, Dickerman R, Drake D, Sandor ZF, Trevino G. Intraoperative blood volume expansion induces primary function after renal transplantation: a study of 96 paired cadaver kidneys. Transplant Proc 1991; 23: 13381339.Google Scholar
Dawidson IJ, Sandor ZF, Coorpender Let al. Intraoperative albumin administration affects the outcome of cadaver renal transplantation. Transplantation 1992; 53: 774782.Google Scholar
Yoshimura A, Ideura T, Iwasaki S, Taira T, Koshikawa S. Aggravation of minimal change nephrotic syndrome by administration of human albumin. Clin Nephrol 1992; 37: 109114.Google Scholar
Legendre C, Thervet E, Page B, Percheron A, Noel LH, Kreis H. Hydroxyethylstarch and osmotic-nephrosis-like lesions in kidney transplantation. Lancet 1993; 342: 248249.Google Scholar
Dawidson I, Ar'Rajab A, Dickerman Ret al. Perioperative albumin and verapamil improve early outcome after cadaver renal transplantation. Transplant Proc 1994; 26: 31003101.Google Scholar
Coronel B, Mercatello A, Simone C, Xavier M, Moskovtchenko JF. Hydroxyethylstarch and osmotic nephrosis-like lesions in kidney transplants. Lancet 1996; 348: 1595.Google Scholar
Schneider M, Valentine S, Clarke GM, Newman MA, Peacock J. Acute renal failure in cardiac surgical patients, potentiated by gentamicin and calcium. Anaesth Intens Care 1996; 24: 647650.Google Scholar
Deman A, Peeters P, Sennesael J. Hydroxyethyl starch does not impair immediate renal function in kidney transplant recipients: a retrospective, multicentre analysis. Nephrol Dial Transplant 1999; 14: 15171520.Google Scholar
Boldt J, Brenner T, Lang J, Kumle B, Isgro F. Kidney-specific proteins in elderly patients undergoing cardiac surgery with cardiopulmonary bypass. Anesth Analg 2003; 97: 15821589.Google Scholar
Veldman BA, Schepkens HL, Vervoort G, Klasen I, Wetzels JF. Low concentrations of intravenous polygelines promote low-molecular weight proteinuria. Eur J Clin Invest 2003; 33: 962968.Google Scholar
Winkelmayer WC, Glynn RJ, Levin R, Avorn J. Hydroxyethyl starch and change in renal function in patients undergoing coronary artery bypass graft surgery. Kidney Int 2003; 64: 10461049.Google Scholar
Janeway CA, Gibson ST, Woodruff LM, Heyl JT, Bailey OT, Newhouser LR. Chemical, clinical, and immunological studies on the products of human plasma fractionation. VII. Concentrated human serum albumin. J Clin Invest 1944; 23: 465490.Google Scholar
Davison AM, Lambie AT, Verth AH, Cash JD. Salt-poor human albumin in management of nephrotic syndrome. Brit Med J 1974; 1: 481484.Google Scholar
Burleson RL, Jones DB, Yenikomshian AM, Cornwall C, DeVoe C, DeRito J. Clinical renal preservation by cryoperfusion with an albumin perfusate: renal perfusion with albumin. Arch Surg 1978; 113: 688692.Google Scholar
Luciani J, Frantz P, Thibault Pet al. Early anuria prevention in human kidney transplantation. Advantage of fluid load under pulmonary arterial pressure monitoring during surgical period. Transplantation 1979; 28: 308312.Google Scholar
Weiss RA, Schoeneman M, Greifer I. Treatment of severe nephrotic edema with albumin and furosemide. N Y State J Med 1984; 84: 384386.Google Scholar
Koppel C, Baudisch H, Ibe K. Inadvertent metal loading of critically ill patients with acute renal failure by human albumin solution infusion therapy. J Toxicol Clin Toxicol 1988; 26: 337356.Google Scholar
Haws RM, Baum M. Efficacy of albumin and diuretic therapy in children with nephrotic syndrome. Pediatrics 1993; 91: 11421146.Google Scholar
McLigeyo SO. Experience with the use of human albumin in renal patients at the Kenyatta National Hospital. E Afr Med J 1993; 70: 1517.Google Scholar
Rabelink TJ, Bijlsma JA, Koomans HA. Iso-oncotic volume expansion in the nephrotic syndrome. Clin Sci (Colch) 1993; 84: 627632.Google Scholar
Biesenbach G, Kaiser W, Zazgornik J. Incidence of acute oligoanuric renal failure in dextran 40 treated patients with acute ischemic stroke stage III or IV. Ren Fail 1997; 19: 6975.Google Scholar
Branten AJ, Wetzels JF. Influence of albumin infusion on the urinary excretion of β2-microglobulin in patients with proteinuria. Nephron 1999; 81: 329333.Google Scholar
Schindler C, Ramadori G. Albumin substitution improves urinary sodium excretion and diuresis in patients with liver cirrhosis and refractory ascites. J Hepatol 1999; 31: 1132.Google Scholar
Kumle B, Boldt J, Suttner S, Piper SN. Veränderung der Nierenfunktion älterer Patienten in der perioperativen Phase. Med Klin (Munich) 2001; 96: 202207.Google Scholar
ten Dam MA, Branten AJ, Klasen IS, Wetzels JF. The gelatin-derived plasma substitute Gelofusine causes low-molecular-weight proteinuria by decreasing tubular protein reabsorption. J Crit Care 2001; 16: 115120.Google Scholar
Jungheinrich C, Scharpf R, Wargenau M, Bepperling F, Baron JF. The pharmacokinetics and tolerability of an intravenous infusion of the new hydroxyethyl starch 130/0.4 (6%, 500 mL) in mild-to-severe renal impairment. Anesth Analg 2002; 95: 544551.Google Scholar
Valdivia P, Gonzalez Roncero F, Gentil MAet al. Plasmapheresis for the prophylaxis and treatment of recurrent focal segmental glomerulosclerosis following renal transplant. Transplant Proc 2005; 37: 14731474.Google Scholar
Morgan TO, Little JM, Evans WA. Renal failure associated with low-molecular-weight dextran infusion. Brit Med J 1966; 2: 737739.Google Scholar
Mailloux L, Swartz CD, Capizzi Ret al. Acute renal failure after administration of low-molecular weight dextran. New Engl J Med 1967; 277: 11131118.Google Scholar
Feest TG. Low molecular weight dextran: a continuing cause of acute renal failure. Brit Med J 1976; 2: 1300.Google Scholar
Rego Filho E, Casoni W. Efeito da infusão de albumina humana e furosemide em crianças com síndrome nefrótico primá;rio. Rev Bras Pesqui Med Biol 1977; 10: 299304.Google Scholar
van den Berg CJ, Pineda AA. Plasma exchange in the treatment of acute renal failure due to low molecular-weight dextran. Mayo Clin Proc 1980; 55: 387389.Google Scholar
Pfeifer U, Kult J, Forster H. Ascites als Komplikation hepatischer Speicherung von Hydroxyethylstärke (HES) bei Langzeitdialyse. Klin Wochenschr 1984; 62: 862866.Google Scholar
Schwarz J, Ihle B, Dowling J. Acute renal failure induced by low molecular weight dextran. Aust N Z J Med 1984; 14: 688689.Google Scholar
Dienes HP, Gerharz CD, Wagner R, Weber M, John HD. Accumulation of hydroxyethyl starch (HES) in the liver of patients with renal failure and portal hypertension. J Hepatol 1986; 3: 223227.Google Scholar
Moran M, Kapsner C. Acute renal failure associated with elevated plasma oncotic pressure. New Engl J Med 1987; 317: 150153.Google Scholar
Druml W, Polzleitner D, Laggner AN. Dextran-40, acute renal failure and elevated plasma oncotic pressure. New Engl J Med 1988; 318: 252253.Google Scholar
Haskell LP, Tannenberg AM. Elevated urinary specific gravity in acute oliguric renal failure due to hetastarch administration. N Y State J Med 1988; 88: 387388.Google Scholar
Hussain SF, Drew PJ. Acute renal failure after infusion of gelatins. Brit Med J 1989; 299: 11371138.Google Scholar
Rozich JD, Paul RV. Acute renal failure precipitated by elevated colloid osmotic pressure. Am J Med 1989; 87: 358360.Google Scholar
Zwaveling JH, Meulenbelt J, van Xanten NH, Hene RJ. Renal failure associated with the use of dextran-40. Neth J Med 1989; 35: 321326.Google Scholar
Kurnik BR, Singer F, Groh WC. Case report: dextran-induced acute anuric renal failure. Am J Med Sci 1991; 302: 2830.Google Scholar
Waldhausen P, Kiesewetter H, Leipnitz Get al. Durch Hydroxyäthylstärke induzierte passagere Niereninsuffizienz bei vorbestehender gloumerulärer Schädigung. Acta Med Austriaca 1991; 18 (Suppl 1): 5255.Google Scholar
Arzneimittelkommission der deutschen Ärzteschaft. Akutes Nierenversagen nach Infusion von Hydroxyethylstärke im Rahmen einer Hämodilutionstherapie. Dtsch Ärztebl 1992; 89: B-2745.
Ferraboli R, Malheiro PS, Abdulkader RC, Yu L, Sabbaga E, Burdmann EA. Anuric acute renal failure caused by dextran 40 administration. Ren Fail 1997; 19: 303306.Google Scholar
Dickenmann MJ, Filipovic M, Schneider MC, Brunner FP. Hydroxyethylstarch-associated transient acute renal failure after epidural anaesthesia for labour analgesia and caesarean section. Nephrol Dial Transplant 1998; 13: 2706.Google Scholar
Moison RM, Haasnoot AA, Van Zoeren-Grobben D, Berger HM. Plasma proteins in acute and chronic lung disease of the newborn. Free Radic Biol Med 1998; 25: 321328.Google Scholar
Tsang RK, Mok JS, Poon YS, van Hasselt A. Acute renal failure in a healthy young adult after dextran 40 infusion for external-ear reattachment surgery. Brit J Plast Surg 2000; 53: 701703.Google Scholar
Brooks D, Okeefe P, Buncke HJ. Dextran-induced acute renal failure after microvascular muscle transplantation. Plast Reconstr Surg 2001; 108: 20572060.Google Scholar
Kato A, Yonemura K, Matsushima H, Ikegaya N, Hishida A. Complication of oliguric acute renal failure in patients treated with low-molecular weight dextran. Ren Fail 2001; 23: 679684.Google Scholar
Peron S, Mouthon L, Guettier C, Brechignac S, Cohen P, Guillevin L. Hydroxyethyl starch-induced renal insufficiency after plasma exchange in a patient with polymyositis and liver cirrhosis. Clin Nephrol 2001; 55: 408411.Google Scholar
de Labarthe A, Jacobs F, Blot F, Glotz D. Acute renal failure secondary to hydroxyethylstarch administration in a surgical patient. Am J Med 2001; 111: 417418.Google Scholar
Vos SC, Hage JJ, Woerdeman LA, Noordanus RP. Acute renal failure during dextran-40 antithrombotic prophylaxis: report of two microsurgical cases. Ann Plast Surg 2002; 48: 193196.Google Scholar
Chinitz JL, Kim KE, Onesti G, Swartz C. Pathophysiology and prevention of dextran-40-induced anuria. J Lab Clin Med 1971; 77: 7687.Google Scholar
Eddy AA. Interstitial nephritis induced by protein-overload proteinuria. Am J Pathol 1989; 135: 719733.Google Scholar
Chen L, Boadle RA, Harris DC. Toxicity of holotransferrin but not albumin in proximal tubule cells in primary culture. J Am Soc Nephrol 1998; 9: 7784.Google Scholar
Hauet T, Faure JP, Baumert Het al. Influence of different colloids on hemodynamic and renal functions: comparative study in an isolated perfused pig kidney model. Transplant Proc 1998; 30: 27962797.Google Scholar
Dixon R, Brunskill NJ. Activation of mitogenic pathways by albumin in kidney proximal tubule epithelial cells: implications for the pathophysiology of proteinuric states. J Am Soc Nephrol 1999; 10: 14871497.Google Scholar
Iglesias J, Abernethy VE, Wang Z, Lieberthal W, Koh JS, Levine JS. Albumin is a major serum survival factor for renal tubular cells and macrophages through scavenging of ROS. Am J Physiol 1999; 277: F711F722.Google Scholar
Drumm K, Gassner B, Silbernagl S, Gekle M. Albumin in the mg/L-range activates NF-κB in renal proximal tubule-derived cell lines via tyrosine kinases and protein kinase C. Eur J Med Res 2001; 6: 247258.Google Scholar
Erkan E, De Leon M, Devarajan P. Albumin overload induces apoptosis in LLC-PK1 cells. Am J Physiol Renal Physiol 2001; 280: F1107F1114.Google Scholar
Morigi M, Macconi D, Zoja Cet al. Protein overload-induced NF-κB activation in proximal tubular cells requires H2O2 through a PKC-dependent pathway. J Am Soc Nephrol 2002; 13: 11791189.Google Scholar
Erkan E, Devarajan P, Schwartz GJ. Apoptotic response to albumin overload: proximal vs. distal/collecting tubule cells. Am J Nephrol 2005; 25: 121131.Google Scholar
Lazrove S, Waxman K, Shippy C, Shoemaker WC. Hemodynamic, blood volume, and oxygen transport responses to albumin and hydroxyethyl starch infusions in critically ill postoperative patients. Crit Care Med 1980; 8: 302306.Google Scholar
Bauer C, Walcher F, Holanda M, Mertzlufft F, Larsen R, Marzi I. Antioxidative resuscitation solution prevents leukocyte adhesion in the liver after hemorrhagic shock. J Trauma 1999; 46: 886893.Google Scholar
Boldt J, Heesen M, Padberg W, Martin K, Hempelmann G. The influence of volume therapy and pentoxifylline infusion on circulating adhesion molecules in trauma patients. Anaesthesia 1996; 51: 529535.Google Scholar
Boldt J, Muller M, Heesen M, Neumann K, Hempelmann GG. Influence of different volume therapies and pentoxifylline infusion on circulating soluble adhesion molecules in critically ill patients. Crit Care Med 1996; 24: 385391.Google Scholar
Förster H, Wicarkzyk C, Dudziak R. Bestimmung der Plasmaelimination von Hydroxyaethylstärke und von Dextran mittels verbesserter analytischer Methodik. Infusionsther Klin Ernahr 1981; 2: 8894.Google Scholar
Waitzinger J, Bepperling F, Pabst G, Opitz J. Hydroxyethyl starch (HES) [130/0.4], a new HES specification: pharmacokinetics and safety after multiple infusions of 10% solution in healthy volunteers. Drugs R D 2003; 4: 149157.Google Scholar
Thompson WL, Fukushima T, Rutherford RB, Walton RP. Intravascular persistence, tissue storage, and excretion of hydroxyethyl starch. Surg Gynecol Obstet 1970; 131: 965972.Google Scholar
Lindblad G, Falk J. Konzentrationsverlauf von Hydroxyäthylstärke und Dextran in Serum und Lebergewebe von Kaninchen und die histopathologischen Folgen der Speicherung von Hydroxyäthylstärke. Infusionstherapie 1976; 3: 301303.Google Scholar
Paulini K, Sonntag W. Veränderungen des RHS der Ratte nach parenteraler Gabe von Dextran (Mw 40000) und Hydroxyäthylstärke (Mw 40000): Chemische, licht- und elektronenmikroskopische Untersuchungen. Infusionstherapie 1976; 3: 294299.Google Scholar
Jesch F, Hübner G, Zumtobel V, Zimmermann M, Messmer K. Hydroxyäthylstärke (HÄS 450/0,7) in Plasma und Leber: Konzentrationsverlauf und histologische Veränderungen beim Menschen. Infusionsther Klin Ernahr 1979; 6: 112117.Google Scholar
Asskali F, Förster H. Zur Kumulation unterschiedlich substituierter Hydroxyethylstärke (HES) nach repetitiver Infusion bei gesunden Versuchspersonen. Anästhesiol Intensivmed Notfallmed Schmerzther 1999; 34: 537541.Google Scholar
Coronel B, Laurent V, Mercatello Aet al. L'hydroxyéthylamidon peut-il être utilisé lors de la réanimation des sujets en état de mort cérébrale pour don d'organe? Ann Fr Anesth Réanim 1994; 13: 1016.Google Scholar
Riou B, Cittanova ML. An international review of HES. Intens Care Med 1999; 25: 13401341.Google Scholar
U.S. Food and Drug Administration. Gelatin. Fed Reg 1978; 43: 14743.
Cargill WH. Effect of intravenous administration of human serum albumin on renal function. Proc Soc Exp Biol Med 1948; 68: 189192.Google Scholar
Barker HG, Clark JK, Crosley JrAP. The effect of salt poor human albumin on renal consumption in man. Am J Med Sci 1949; 218: 715.Google Scholar
Lay KS, Bancalari E, Malkus H, Baker R, Strauss J. Acute effects of albumin infusion on blood volume and renal function in premature infants with respiratory distress syndrome. J Pediatr 1980; 97: 619623.Google Scholar
Greenhalgh DG, Housinger TA, Kagan RJet al. Maintenance of serum albumin levels in pediatric burn patients: a prospective, randomized trial. J Trauma 1995; 39: 6773.Google Scholar
Webb AR. The appropriate role of colloids in managing fluid imbalance: a critical review of recent meta-analytic findings. Crit Care 2000; 4 (Supple 2): S26S32.Google Scholar
Brunskill NJ. Molecular interactions between albumin and proximal tubular cells. Exp Nephrol 1998; 6: 491495.Google Scholar
Schreiner GF. Renal toxicity of albumin and other lipoproteins. Curr Opin Nephrol Hypertens 1995; 4: 369373.Google Scholar
Matejtschuk P, Dash CH, Gascoigne EW. Production of human albumin solution: a continually developing colloid. Brit J Anaesth 2000; 85: 887895.Google Scholar
Kumar R, Seth RK, Sekhon MS, Bhargava JS. Serum lipid peroxide and other enzyme levels of patients suffering from thermal injury. Burns 1995; 21: 9697.Google Scholar
Soejima A, Matsuzawa N, Miyake Net al. Hypoalbuminemia accelerates erythrocyte membrane lipid peroxidation in chronic hemodialysis patients. Clin Nephrol 1999; 51: 9297.Google Scholar
Vincent JL, Dubois MJ, Navickis RJ, Wilkes MM. Hypoalbuminemia in acute illness: is there a rationale for intervention? A meta-analysis of cohort studies and controlled trials. Ann Surg 2003; 237: 319334.Google Scholar
Contreras AM, Ramirez M, Cueva L, Alvarez S, de Loza R, Gamba G. Low serum albumin and the increased risk of amikacin nephrotoxicity. Rev Invest Clin 1994; 46: 3743.Google Scholar
Cecka JM, Cho YW, Terasaki PI. Analyses of the UNOS scientific renal transplant registry at three years – early events affecting transplant success. Transplantation 1992; 53: 5964.Google Scholar
Patek AJJ, Mankin H, Colcher H, Lowell A, Earle DPJ. The effects of intravenous injection of concentrated human serum albumin upon blood plasma, ascites and renal functions in three patients with cirrhosis of the liver. J Clin Invest 1948; 27: 135144.Google Scholar
Luetscher JAJ. The effect of a single injection of concentrated human serum albumin on circulating proteins and proteinuria in nephrosis. J Clin Invest 1944; 23: 365371.Google Scholar
DeSanctis AG, Sullivan AM. Nephrosis: A case treated with concentrated, low salt, human serum albumin. J Pediatr 1947; 30: 9195.Google Scholar
Roth O. Concentrated human plasma albumin in treatment of nephrotic edema: report of four cases. Connecticut Med J 1947; 11: 514519.Google Scholar
Orloff J, Welt LG, Stowe L. The effects of concentrated salt-poor albumin on the metabolism and excretion of water and electrolytes in nephrosis and toxemia of pregnancy. J Clin Invest 1950; 29: 770780.Google Scholar
Chelimsky E, Silberman G, Droitcour J. Cross design synthesis. Lancet 1993; 341: 498.Google Scholar
Treib J, Baron JF, Grauer MT, Strauss RG. An international view of hydroxyethyl starches. Intens Care Med 1999; 25: 258268.Google Scholar
Wilkes MM, Navickis RJ, Sibbald WJ. Albumin versus hydroxyethyl starch in cardiopulmonary bypass surgery: a meta-analysis of postoperative bleeding. Ann Thorac Surg 2001; 72: 527533.Google Scholar
Wieslander JB, Salemark L, Dougan P. Hydroxyethyl starch increases patency and reduces thrombus formation following arteriotomy/intimectomy in small arteries: an experimental study in the rabbit. J Reconstr Microsurg 1990; 6: 357361.Google Scholar
Boldt J. Hydroxyethylstärke (HES). Wien Klin Wochenschr 2004; 116: 159169.Google Scholar