Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T11:41:51.103Z Has data issue: false hasContentIssue false

Comparison of the effects of mepivacaine and lidocaine on rat myocardium

Published online by Cambridge University Press:  29 August 2006

J.-S. David
Affiliation:
Laboratoire d'Anesthésiologie, Equipe d'Accueil 1896, Département d'Anesthésie-Réanimation-SAMU, Centre Hospitalier Universitaire (CHU) Edouard Herriot and Service d'Anesthésie-Réanimation, CHU Lyon-Sud, Hospices Civils de Lyon (HCL), Université Claude Bernard, Lyon, France
J. Amour
Affiliation:
Laboratoire d'Anesthésiologie, Equipe d'Accueil 3975, Département d'Anesthésie-Réanimation et Service d'Accueil des Urgences, CHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Pierre et Marie Curie, Paris, France
C. Duracher
Affiliation:
Laboratoire d'Anesthésiologie, Equipe d'Accueil 1896, Département d'Anesthésie-Réanimation-SAMU, Centre Hospitalier Universitaire (CHU) Edouard Herriot and Service d'Anesthésie-Réanimation, CHU Lyon-Sud, Hospices Civils de Lyon (HCL), Université Claude Bernard, Lyon, France
C. Ferretti
Affiliation:
Laboratoire d'Anesthésiologie, Equipe d'Accueil 1896, Département d'Anesthésie-Réanimation-SAMU, Centre Hospitalier Universitaire (CHU) Edouard Herriot and Service d'Anesthésie-Réanimation, CHU Lyon-Sud, Hospices Civils de Lyon (HCL), Université Claude Bernard, Lyon, France
P. Precloux
Affiliation:
Service d'Anesthésie-Réanimation, Hôpital d'Instruction des Armées Desgenettes, Lyon, France
P. Petit
Affiliation:
Laboratoire d'Anesthésiologie, Equipe d'Accueil 1896, Département d'Anesthésie-Réanimation-SAMU, Centre Hospitalier Universitaire (CHU) Edouard Herriot and Service d'Anesthésie-Réanimation, CHU Lyon-Sud, Hospices Civils de Lyon (HCL), Université Claude Bernard, Lyon, France
B. Riou
Affiliation:
Laboratoire d'Anesthésiologie, Equipe d'Accueil 3975, Département d'Anesthésie-Réanimation et Service d'Accueil des Urgences, CHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Pierre et Marie Curie, Paris, France
P.-Y. Gueugniaud
Affiliation:
Laboratoire d'Anesthésiologie, Equipe d'Accueil 1896, Département d'Anesthésie-Réanimation-SAMU, Centre Hospitalier Universitaire (CHU) Edouard Herriot and Service d'Anesthésie-Réanimation, CHU Lyon-Sud, Hospices Civils de Lyon (HCL), Université Claude Bernard, Lyon, France
Get access

Abstract

Summary

Background and objective: To compare the inotropic and lusitropic effect of lidocaine and mepivacaine on rat papillary muscle. Methods: Effects of lidocaine and mepivacaine (10−8−10−3 M) were studied in rat left ventricular papillary muscles in vitro at a calcium concentration of 1 mmol, under low (isotony) and high (isometric) loads. Results: Lidocaine induced a significant negative inotropic effect in isotonic and isometric conditions whereas mepivacaine did not. Mepivacaine only induced a negative inotropic effect when added as a bolus for the highest concentration and this effect was significantly more pronounced with lidocaine than with mepivacaine (active force at 10−3 M: 63 ± 10 vs. 84 ± 10% of baseline, P < 0.05). Increasing calcium concentration resulted in a greater positive inotropic effect in the control (199 ± 11% of baseline) and mepivacaine groups (197 ± 22% of baseline) when compared to the lidocaine group (163 ± 19% of baseline, P < 0.05 vs. lidocaine and control groups), suggesting an impairment on intracellular Ca2+ handling by lidocaine. A negative lusitropic effect under low load was observed only for mepivacaine and suggested an impairment of sarcoplasmic reticulum function. Lidocaine and mepivacaine did not modify postrest potentiation but significantly depressed the force–frequency relationship. Conclusions: The negative inotropic and lusitropic effects induced by lidocaine were more important than that of mepivacaine and may involve an impairment of intracellular Ca2+ handling.

Type
Original Article
Copyright
2007 European Society of Anaesthesiology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berde CB, Strichartz GR. Local anesthetics. In: Miller RD, ed. Anesthesia, 5th edn.New York: Churchill Livingstone, 2000: 155164.
Prieto-Alvarez P, Calas-Guerra A, Fuentes-Bellido J, Martinez-Verdera E, Benet-Catala A, Lorenzo-Foz JP. Comparison of mepivacaine and lidocaine for intravenous regional anaesthesia: pharmacokinetic study and clinical correlation. Br J Anaesth 2002; 88: 516519.Google Scholar
Goodman LS, Hardman JG, Limbird LEet al. In: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 10th edn.New York: McGraw-Hill, 2001.
Kon Park W, Kook Suh C. Mechanical and electrophysiological effects of mepivacaine on direct myocardial depression in vitro. Br J Anaesth 1998; 81: 244246.Google Scholar
Josephson IR, Cui Y. Voltage- and concentration-dependent effects of lidocaine on cardiac Na channel gating charge movements. Pflugers Arch 1994; 428: 485491.Google Scholar
Brau ME, Vogel W, Hempelmann G. Fundamental properties of local anesthetics: half-maximal blocking concentrations for tonic block of Na+ and K+ channels in peripheral nerve. Anesth Analg 1998; 87: 885889.Google Scholar
Lynch III C. Depression of myocardial contractility in vitro by bupivacaine, etidocaine, and lidocaine. Anesth Analg 1986; 65: 551559.Google Scholar
Sheu SS. Cytosolic sodium concentration regulates contractility of cardiac muscle. Basic Res Cardiol 1989; 84(Suppl 1): 3545.Google Scholar
Xu F, Garavito-Aguilar Z, Recio-Pinto E, Zhang J, Blanck TJ. Local anesthetics modulate neuronal calcium signaling through multiple site of action. Anesthesiology 2003; 98: 11391146.Google Scholar
Ono K, Kiyosue T, Arita M. Comparison of the inhibitory effects of mexiletine and lidocaine on the calcium current of single ventricular cells. Life Sci 1986; 39: 14651470.Google Scholar
Minakuchi C, Itoh H. The effect of local anesthetics onthe isolated human right atrial appendages. Part 2: Bupivacaine is different from lidocaine concerning the mechanism of inhibition of contractility. Masui 1991; 40: 12041209.Google Scholar
Rhodes SS, Ropella KM, Camara AKSet al. How inotropic drugs alter dynamic and static indices of cyclic myoplasmic [Ca2+] to contractility relationships in intact hearts. J Cardiovasc Pharmacol 2003; 42: 539553.Google Scholar
Riou B, Lecarpentier Y, Viars P. In vitro effect of ketamine on rat cardiac papillary muscle. Anesthesiology 1989; 71: 116125.Google Scholar
David JS, Vivien B, Lecarpentier Y, Coriat P, Riou B. Interaction of protamine with α- and β-adrenoceptor stimulations in rat myocardium. Anesthesiology 2001; 95: 12261233.Google Scholar
Prabhu SD, Azimi A, Frosto T. Nitric oxide effects on myocardial function and force-interval relations: regulation of twitch duration. J Mol Cell Cardiol 1999; 31: 20772085.Google Scholar
Urthaler F, Walker AA, Reeves DNS, Hefner LL. Maximal twitch tension in intact length-clamped ferret papillary muscles evoked by modified postextrasystolic potentiation. Circ Res 1988; 62: 6574.Google Scholar
Layland J, Kentish JC. Positive force- and [Ca2+]i-frequency relationships in rat ventricular trabeculae at physiological frequencies. Am J Physiol 1999; 276: H9H18.Google Scholar
Hanouz JL, Riou B, Massias Let al. Interaction of halothane with alpha- and beta-adrenoceptor stimulations in rat myocardium. Anesthesiology 1997; 86: 147159.Google Scholar
Chemla D, Lecarpentier Y, Martin JLet al. Relationship between inotropy and relaxation in rat myocardium. Am J Physiol 1986; 250: H1008H1016.Google Scholar
Lecarpentier YC, Martin JL, Claes VAet al. Real-time kinetics of sarcomere relaxation by laser diffraction. Circ Res 1985; 56: 331339.Google Scholar
Housmans PR, Lee NKM, Blinks JR. Active shortening retards the decline of intracellular calcium transient in mammalian heart muscle. Science 1983; 221: 159161.Google Scholar
Hoffman PA, Fuchs F. Evidence for a force-dependent component of calcium binding to cardiac troponin C. Am J Physiol 1986; 253: 541546.Google Scholar
Nwasokwa ON. A model of the time course of myocardial relaxation dynamics: use in characterisation of relaxation and evaluation of its indices. Cardiovasc Res 1993; 27: 15101521.Google Scholar
Ludbrook J. Repeated measurements and multiple comparisons in cardiovascular research. Cardiovasc Res 1994; 28: 303311.Google Scholar
David JS, Tavernier B, Amour J, Vivien B, Coriat P, Riou B. Myocardial effects of halothane and sevoflurane in diabetic rats. Anesthesiology 2004; 100: 11791187.Google Scholar
Edouard A, Berdeaux A, Langloys J, Samii K, Giudicelli JF, Noviant Y. Effects of lidocaine on myocardial contractility and baroreflex control of heart rate in conscious dogs. Anesthesiology 1986; 64: 316321.Google Scholar
Itoh H, Minakuchi C, Hase K. The effect of local anesthetics on the isolated human right atrial appendages. 1: A comparison of inhibition of contractility with bupivacaine and lidocaine. Masui 1991; 40: 11981203.Google Scholar
Desai SP, Marsh JD, Allen PD. Contractility effects of local anesthetics in the presence of sodium channel blockade. Reg Anesth 1989; 14: 5862.Google Scholar
Aomine M. Electrophysiological effects of lidocaine on isolated guinea pig Purkinje fibers: comparison with its effects on papillary muscle. Gen Pharmacol 1989; 20: 99104.Google Scholar
Shannon TR, Bers DM. Integrated Ca2+ management in cardiac myocytes. Ann NY Acad Sci 2004; 1015: 2838.Google Scholar
Mitchell MR, Plant S. Effect of lidocaine on action potentials, currents and contractions in the absence and presence of ouabain in guinea-pig ventricular cells. Q J Exp Physiol 1988; 73: 379390.Google Scholar
Katsuaki I, Kazunori N, Atsuo T, Ryosuke Y, Hiroyuki K. Possible involvement of altered Na+–Ca2+ exchange in negative inotropic effects of class I antiarrhythmic drugs on rabbit and rat ventricles. J Cardiovasc Pharm 1996; 27: 355361.Google Scholar
Pieske B, Maier LS, Piacentino V, Weisser J, Hasenfuss G, Steven Houser S. Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation 2002; 106: 447453.Google Scholar
Cohen CJ, Fozzard HA, Sheu SS. Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circ Res 1982; 50: 651662.Google Scholar
Antoons G, Mubagwa K, Nevelsteen I, Sipido KR. Mechanisms underlying the frequency dependence of contraction and [Ca2+]i transients in mouse ventricular myocytes. J Physiol 2002; 543: 889898.Google Scholar
Paradise NF, Schmitter JL, Surmitis JM. Criteria for adequate oxygenation of isometric kitten papillary muscle. Am J Physiol 1981; 241: H348H353.Google Scholar
Schnider SM, Way EL. The kinetics of transfer of lidocaine (xylocaine) across the human placenta. Anesthesiology 1968; 29: 944950.Google Scholar
Morishima HO, Daniel SS, Finster M, Poppers PJ, James LS. Transmission of mepivacaine hydrochloride (carbocaine)s across the human placenta. Anesthesiology 1966; 27: 147154.Google Scholar