Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T02:07:10.407Z Has data issue: false hasContentIssue false

A non-overlapping domain decomposition method for continuous-pressure mixedfinite element approximations of the Stokes problem* **

Published online by Cambridge University Press:  30 November 2010

Hani Benhassine
Affiliation:
Département de Mathématiques, Université de Jijel, BP 98 Aouled Aissa, 18000 Jijel, Algeria. Université de Toulouse, Institut Mathématique de Toulouse, Département de Génie Mathématique, INSA de Toulouse, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France. h.benhassine@gmail.com; abendali@insa-toulouse.fr
Abderrahmane Bendali
Affiliation:
Université de Toulouse, Institut Mathématique de Toulouse, Département de Génie Mathématique, INSA de Toulouse, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France. h.benhassine@gmail.com; abendali@insa-toulouse.fr
Get access

Abstract

This study is mainly dedicated to the development and analysis ofnon-overlapping domain decomposition methods for solving continuous-pressurefinite element formulations of the Stokes problem. These methods have thefollowing special features. By keeping the equations and unknowns unchanged atthe cross points, that is, points shared by more than two subdomains, one caninterpret them as iterative solvers of the actual discrete problem directlyissued from the finite element scheme. In this way, the good stabilityproperties of continuous-pressure mixed finite element approximations of theStokes system are preserved. Estimates ensuring that each iteration can beperformed in a stable way as well as a proof of the convergence of theiterative process provide a theoretical background for the application of therelated solving procedure. Finally some numerical experiments are given todemonstrate the effectiveness of the approach, and particularly to compare itsefficiency with an adaptation to this framework of a standard FETI-DP method.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, M. and Sherwin, S., Domain decomposition preconditioners for p and hp finite element approximation of Stokes equations. Comput. Methods Appl. Mech. Eng. 175 (1999) 243266. CrossRef
Bendali, A. and Boubendir, Y., Méthodes de décomposition de domaine et éléments finis nodaux pour la résolution de l'équation d'Helmholtz. C. R. Acad. Sci. Paris Sér. I 339 (2004) 229234. CrossRef
Bendali, A. and Boubendir, Y., Non-overlapping domain decomposition method for a nodal finite element method. Numer. Math. 103 (2006) 515537. CrossRef
Bercovier, M. and Engelman, M., A finite element for the numerical solution of viscous incompressible flows. J. Comput. Phys. 30 (1979) 181201. CrossRef
Y. Boubendir, Techniques de décompositions de domaine et méthode d'équations intégrales. Ph.D. Thesis, INSA, Toulouse (2002).
Boubendir, Y., An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering problem. J. Comput. Appl. Math. 204 (2007) 282– 291. CrossRef
S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods . Springer-Verlag, New York (2002).
F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991).
Calgaro, C. and Laminie, J., On the domain decomposition method for the Stokes Problem with continuous pressure. Numer. Methods Partial Differ. Equ. 16 (2000) 84106. 3.0.CO;2-2>CrossRef
P.G. Ciarlet, The finite element method for elliptic problems . North-Holland, Amsterdam (1978).
Chacón Rebollo, T. and Chacón Vera, E., A non-overlapping domain decomposition method for the Stokes equations via a penalty term on the interface. C. R. Acad. Sci. Paris Sér. I 334 (2002) 221226. CrossRef
Chacón Rebollo, T. and Chacón Vera, E., Study of a non-overlapping domain decomposition method: Poisson and Stokes problems. Appl. Numer. Math. 48 (2004) 169194. CrossRef
Collino, F., Ghanemi, S. and Joly, P., Domain decomposition method for harmonic wave propagation: a general presentation. Comput. Methods Appl. Mech. Eng. 184 (2000) 171211. CrossRef
B. Després, Domain decomposition method and the Helmholtz problem, in Mathematical and Numerical Aspect of Wave Propagation Phenomena, SIAM, Philadelphia (1991) 44–52.
Discacciati, M., Quarteroni, A. and Valli, A., Robin-Robin domain decomposition methods for the Stokes-Darcy Coupling. SIAM J. Numer. Anal. 45 (2007) 12461268. CrossRef
Ferhat, C. and Roux, F.X., A method of finite element tearing and interconnecting and its parallel solution alghorithm. Int. J. Numer. Methods Eng. 32 (1991) 12051227. CrossRef
Ferhat, C., Lesoinne, M., Le Tallec, P., Pierson, K. and Rixen, D., FETI-DP: a dual-primal unified FETI method-part I: A faster alternative to the two-level FETI method. Int. J. Numer. Meth. Engng. 50 (2001) 15231544. CrossRef
V. Girault and P.A. Raviart, Finite Element Methods For Navier-Stokes Equations . Springer-Verlag, Berlin-Heidelberg (1986).
Girault, V., Rivière, B. and Wheeler, M.F., A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74 (2004) 5384. CrossRef
P. Gosselet and C. Rey, Non-overlapping domain decomposition methods in structural mechanics. Arch. Comput. Meth. Engng. 13 (2006) 515–572.
Gwynllyw, D.Rh. and Phillips, T.N., On the enforcement of the zero mean pressure condition in the spectral element approximation of the Stokes Problem. Comput. Methods Appl. Mech. Eng. 195 (2006) 10271049. CrossRef
H.H. Kim and C. Lee, A Neumann-Dirichlet preconditioner for a FETI-DP formulation of the two dimensional Stokes problem with mortar methods. SIAM J. Sci. Comput. 28 (2006) 1133–1152.
Kim, H.H., Lee, C. and Park, E.-H., FETI-DP, A formulation for the Stokes problem without primal pressure components. SIAM J. Numer. Anal. 47 (2010) 41424162. CrossRef
A. Klawonn and L.F. Pavarino, Overlapping Schwarz methods for elasticity and Stokes problems. Comput. Methods Appl. Mech. Eng. 165 (1998) 233–245.
P. Le Tallec and A. Patra, Non-overlapping domain decomposition methods for adaptive hp approximations for the Stokes problem with discontinuous pressure fields. Comput. Methods Appl. Mech. Eng. 145 (1997) 361–379.
Li, J., Dual-Primal FETI, A methods for incompressible Stokes equations. Numer. Math. 102 (2005) 257275. CrossRef
P.L. Lions, On the Schwarz alternating method III: A variant for non-overlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equation, SIAM, Philadelphia (1990) 202–223.
Lube, G., Müller, L. and Otto, F.C., A nonoverlapping domain decomposition method for stabilised finite element approximations of the Oseen equations. J. Comput. Appl. Math. 132 (2001) 211236. CrossRef
Mandel, J. and Tezaur, R., On the convergence of a dual primal substructuring method. Numer. Math. 88 (2001) 543558. CrossRef
Marini, L.D. and Quarteroni, A., Relaxation procedure for domain decomposition methods using finite elements. Numer. Math. 55 (1989) 575589. CrossRef
Otto, F.C. and Lube, G., A nonoverlapping domain decomposition method for the Oseen equations. Math. Models Methods Appl. Sci. 8 (1998) 10911117. CrossRef
Otto, F.C., Lube, G. and Müller, L., An iterative substructuring method for div-stable finite element approximation of the Oseen problem. Computing 67 (2001) 91117. CrossRef
Pavarino, L.F. and Widlund, O.B., Balancing Neumann-Neumann methods for incompressible Stokes equations. Commun. Pure Appl. Math. 55 (2002) 302335. CrossRef
A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations . Oxford University Press Inc., New York (1999).
E.M. Rønquist, Domain decomposition methods for the steady Navier-Stokes equations, in 11th International Conference on Domain Decomposition Methods (London, 1998), DDM.org, Augsburg (1999) 330–340.
Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996).
Vereecke, B., Bavestrello, H. and Dureisseix, D., An extension of the FETI domain decomposition method for incompressible and nearly incompressible problems. Comput. Methods Appl. Mech. Eng. 192 (2003) 34093429. CrossRef