Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T10:34:38.487Z Has data issue: false hasContentIssue false

The effect of reduced integrationin the Steklov eigenvalue problem

Published online by Cambridge University Press:  15 February 2004

María G. Armentano*
Affiliation:
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina. garmenta@dm.uba.ar.
Get access

Abstract

In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armentano, M.G. and Durán, R.G., Mass lumping or not mass lumping for eigenvalue problems. Numer. Methods Partial Differential Equations 19 (2003) 653664. CrossRef
I. Babuska and J. Osborn, Eigenvalue Problems, Handbook of Numerical Analysis, Vol. II. Finite Element Methods (Part. 1) (1991).
Banerjee, U. and Osborn, J., Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numer. Math. 56 (1990) 735762. CrossRef
Belgacem, F.B. and Brenner, S.C., Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems. Electron. Trans. Numer. Anal. 12 (2001) 134148.
Bermudez, A., Rodriguez, R. and Santamarina, D., A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000) 201227. CrossRef
S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994).
P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
P. Grisvard, Elliptic Problems in Nonsmooth Domain. Pitman Boston (1985).
H.J.-P. Morand and R. Ohayon, Interactions Fluids-Structures. Rech. Math. Appl. 23 (1985).
H.F. Weinberger, Variational Methods for Eigenvalue Approximation. SIAM, Philadelphia (1974).