Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T10:10:13.938Z Has data issue: false hasContentIssue false

Regularity and variationality of solutionsto Hamilton-Jacobi equations. Part I: Regularity (errata)

Published online by Cambridge University Press:  12 May 2007

Andrea C. G. Mennucci*
Affiliation:
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; a.mennucci@sns.it
Get access

Abstract

This errata corrects one error in the 2004 version of this paper [Mennucci, ESAIM: COCV10 (2004) 426–451].

Type
Correction
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cannarsa, P., Mennucci, A. and Sinestrari, C., Regularity results for solutions of a class of Hamilton-Jacobi equations. Arch. Rat. Mech. 140 (1997) 197223 (or preprint 13-95, Dip. Mat., Univ. Tor Vergata, Roma). CrossRef
H. Federer, Geometric measure theory. Springer-Verlag (1969).
Galloway, G.J., Chruściel, P.T., Fu, J.H.G. and Howard, R., On fine differentiability properties of horizons and applications to Riemannian geometry. J. Geom. Phys. 41 (2002) 112.
Itoh, J. and Tanaka, M., The Lipschitz continuity of the distance function to the cut locus. Trans. AMS 353 (2000) 2140. CrossRef
Li, Y.Y. and Nirenberg, L., The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Comm. Pure Appl. Math. 58 (2005) 85146 (first received as a personal communication in June 2003). CrossRef
Mantegazza, C. and Mennucci, A.C., Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47 (2002) 125. CrossRef
Mennucci, A.C.G., Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: regularity. ESAIM: COCV 10 (2004) 426451. CrossRef