Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T17:55:14.774Z Has data issue: false hasContentIssue false

On some general almost periodic Optimal Control problems: links with periodic problems and necessary conditions

Published online by Cambridge University Press:  21 December 2007

Denis Pennequin*
Affiliation:
Laboratoire Marin MERSENNE, Université Paris 1 Panthéon-Sorbonne, Centre P.M.F., 90 rue de Tolbiac, 75647 Paris cedex 13, France; pennequi@univ-paris1.fr
Get access

Abstract

In this paper, we are concerned with periodic, quasi-periodic (q.p.) and almost periodic (a.p.) Optimal Control problems. After defining these problems and setting them in an abstract setting by using Abstract Harmonic Analysis, we give some structure results of the set of solutions, and study the relations between periodic and a.p. problems. We prove for instance that for an autonomous concave problem, the a.p. problem has a solution if and only if all problems (periodic with fixed or variable period, q.p. or a.p.) have a constant solution. After that, we give some first order necessary conditions (weak Pontryagin) in the space of Harmonic Synthesis and we also give in this space an existence result.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.-P. Aubin, Optima and Equilibria: an introduction to Nonlinear Analysis. Springer, 2nd Edn. (1988).
A.S. Besicovitch, Almost Periodic Functions. Cambridge University Press, Cambridge (1932) (and Dover, 1954).
J. Blot, Le théorème de Markov-Kakutani et la presque-périodicité, Fixed Point Theory and Applications, M. Théra and J.B. Baillon Eds., Pitman Research Notes in Mathematical Series 252, Longman, London (1991) 45–56.
Blot, J., Oscillations presque-périodiques forcées d'équations d'Euler-Lagrange. Bull. Soc. Math. France 122 (1994) 285304. CrossRef
J. Blot, Variational Methods for the Almost Periodic Lagrangian Oscillations. Preprint, Cahiers Eco et Maths No. 96.44 (1996).
Blot, J. and Pennequin, D., Spaces of quasi-periodic functions and oscillations in dynamical systems. Acta Appl. Math. 65 (2001) 83113. CrossRef
Blot, J. and Pennequin, D., Existence and structure results on Almost Periodic solutions of Difference Equations. J. Diff. Equa. Appl. 7 (2001) 383402. CrossRef
H. Bohr, Almost Periodic Functions. Julius Springer, Berlin (1933) (Chelsea Publishing Company, N.Y., 1947).
F. Colonius, Optimal Periodic Control, in Lect. Notes Math. 1313, Springer, Berlin (1988).
C. Corduneanu, Almost Periodic Functions. Chelsea (1989).
Da Prato, G. and Ichikawa, A., Optimal control of linear systems with a.p. inputs. SIAM J. Control Optim. 25 (1987) 10071019. CrossRef
D.G. De Figueiredo, Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research, Bombay (1989).
J. Favard, Leçons sur les fonctions presque-périodiques. Gauthiers-Villars, Paris (1933).
Halanay, A., Optimal Control of Periodic solutions. Rev. Rouman. Mat. Pure Appl. 19 (1974) 316.
V.P. Havin and N.K. Nikolski Eds., Commutative Harmonic Analysis II. Springer, Berlin (1991).
E. Hewitt, K.A. Ross, Abstract Harmonic Analysis I & II. Springer, Berlin, 2nd Edn. (1979) (and 1970).
Horn, F.J.M. and Bailey, J.E., An application of the theorem of relaxed control to the problem of increasing catalyst selectivity. J. Opt. Theory Appl. 2 (1968) 441449. CrossRef
A. Kovaleva, Optimal Control of Mechanical Oscillations. Springer, Berlin (1999).
J.L. Mauclaire, Intégration et Théorie des Nombres. Travaux en Cours, Hermann, Paris (1986).
G.M. N'Guérékata, Almost automorphic and almost periodic functions in abstract spaces. Kluwer Academic Publishers (2001)
Nistri, P., Periodic Control Problems for a class of nonlinear periodic differential systems. Nonlinear Anal. Theor. Meth. Appl. 7 (1983) 7990. CrossRef
Pennequin, D., Existence results on almost periodic solutions of discrete time equations. Discrete Cont. Dynam. Syst. 7 (2001) 5160. CrossRef
Percival, I.C., Variational principles for the invariant toroids of classical dynamics. J. Phys. A: Math. Nucl. Gen. 7 (1974) 794802. CrossRef
Percival, I.C., Variational principles for invariant tori and cantori. A.I.P. Conf. Proc. 57 (1979) 302310. CrossRef
L. Pontryagin, Topological Groups. N.Y. Gordon and Breach (1966).
Speyer, J.L., Periodic optimal flight. J. Guid. Control Dynam. 61 (1996) 745754. CrossRef
W. Rudin, Fourier Analysis on Groups. Interscience Publishers, N.Y. (1962).
A. Weil, L'intégration dans les Groupes Topologiques. Hermann, Paris (1940).