Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T04:05:36.330Z Has data issue: false hasContentIssue false

Dysregulation of dopamine and pathology of prefrontal neurons: neuroimaging studies in schizophrenia and related animal models

Published online by Cambridge University Press:  11 October 2011

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorials
Copyright
Copyright © Cambridge University Press 1999

References

Abi-Dargham, A.,Gil, R., Krystal, J., Baldwin, R.M., Seibyl, J.P., Bowers, M., Van Dyck, C.H., Charney, D.S., Innis, R.B. & Laruelle, M (1998). Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. American Journal of Psychiatry 155, 761767.Google ScholarPubMed
Andreasen, N.C., Flashman, L., Flaum, M., Arndt, S., Swayze, V., O'Leary, D.S., Ehrhardt, J.C. & Yuh, W.T. (1994): Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging. Journal of the American Medical Association 272(22), 17631769.CrossRefGoogle ScholarPubMed
Bates, T.E., Stranward, M., Keelan, J., Davey, G.P., Munro, P.M.G., & Clark, J.B (1996). Inhibition of N-acetylaspartate production: implications for 1H MRS studies. Neuroreport 7, 13971400.CrossRefGoogle ScholarPubMed
Bertolino, A., Nawroz, S., Mattay, V.S., Duyn, J.H., Moonen, C.T.W., Barnett, A.S., Frank, J.A., Tedeschi, G. & Weinberger, D.R (1996). A specific pattern of neurochemical pathology in schizophrenia as assessed by multislice proton magnetic resonance spectroscopic imaging. American Journal of Psychiatry 153, 15541563.Google ScholarPubMed
Bertolino, A., Saunders, R.C., Mattay, V.S., Bachevalier, J., Frank, J A. & Weinberger, D.R. (1997). Proton magnetic resonance spectroscopic imaging in monkeys with mesial temporo-limbic lesions. Cerebral Cortex 7, 740748.CrossRefGoogle ScholarPubMed
Bertolino, A., Callicott, J.H., Elman, I., Mattay, V.S., Tedschi, G., Frank, J.A., Breier, A., & Weinberger, D.R (1998a). Regionally specific neuronal pathology in untreated patients with schizophrenia: a proton magnetic resonance spectroscopic imaging study. Biological Psychiatry 43, 641648.CrossRefGoogle ScholarPubMed
Bertolino, A., Callicott, J.H., Nawroz, S., Mattay, V.S., Duyn, J.H., Tedwschi, G., Frank, J.A. & Weinberger, D.R (1998b). Reproducibility of proton magnetic resonance spectroscopic imaging in patients with schizophrenia. Neuropsychopharmacology 18, 19.CrossRefGoogle ScholarPubMed
Bertolino, A., Kumra, S., Callicott, J.H., Mattay, V.S., Lestz, R.M., Jacobsen, L., Barnett, I.S., Duyn, J.H., Frank, J.A., Rapoport, J.L. & Weinberger, D.R. (1998c). Common pattern of cortical pathology in childhood-onset and adult-onset schizophrenia as identified by proton magnetic resonance spectroscopic imaging. American Journal of Psychiatry 155, 13761383.CrossRefGoogle ScholarPubMed
Bertolino, A., Knable, M.B., Saunders, R.C., Callicott, J.H., Kolachana, B.S., Mattay, V.S., Bachevalier, J., Egan, M.F., Frank, J.A. & Weinberger, D.R (1999). The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biological Psychiatry 45, 660667.CrossRefGoogle ScholarPubMed
Bertolino, A., Breier, A., Callicott, J.H., Adler, C., Mattay, V.S., Shapiro, M., Frank, J.A., Pickar, D. & Weinberger, D.R. (submitted for publication). The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia.Google Scholar
Braff, D.L., Heaton, R., Kuck, J., Cullum, M., Moranville, J., Grant, I. & Zisook, S. (1991). The generalized pattern of neuropsychological deficits in outpatients with chronic schizophrenia with heterogeneous Wisconsin Card Sorting Test results. Archives of General Psychiatry 48(10), 891898.CrossRefGoogle ScholarPubMed
Braun, A.R., Jaskiw, G.E., Vladar, K., Sexton, R.H., Kolachana, B.S. & Weinberger, D.R (1993). Effects of ibotenic acid lesion of the medial prefrontal cortex on dopamine agonist-related behaviors in the rat. Pharmacology Biochemistry and Behavior 46, 5160.CrossRefGoogle ScholarPubMed
Breier, A., Su, T.P., Saunders, R., Carson, R.E., Kolachana, B.S., De Bartolomeis, A., Weinberger, D.R., Weisenfeld, N., Malhotra, A.K., Eckelman, W.C. & Pickar, D. (1997). Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proceedings of the National Academy of Sciences of the USA 94, 25692574.CrossRefGoogle ScholarPubMed
Buckley, P.F., Moore, C., Long, H., Larkin, C., Thompson, P., Mulvany, F., Redmond, O., Stack, J.P, Ennis, J.T. & Waddington, J.L (1994). 1H Magnetic resonance spectroscopy of the left temporal and frontal lobes in schizophrenia: clinical neurodevelopmental and cognitive correlates. Biological Psychiatry 36, 792800.CrossRefGoogle ScholarPubMed
Callicott, J.H., Eegan, M.F., Bertolino, A., Mattay, V.S., Langheim, F.J.P, Frank, J.A. & Weinberger, D.R (1998). Hippocampal Nacetylaspartate in unaffected siblings of patients with schizophrenia: a possible intermediate phenotype. Biological Psychiatry 44, 941950.CrossRefGoogle Scholar
Carlsson, A (1998). The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1, 179186.CrossRefGoogle Scholar
Clark, J.B (1998). N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Developmental Neuroscience 20, 271276.CrossRefGoogle ScholarPubMed
Davis, K.L., Kahn, R.S., Ko, G. & Davidson, M (1991). Dopamine in schizophrenia: a review and reconceptualization American Journal of Psychiatry 148, 14741486.Google ScholarPubMed
Deicken, R.F., Zhou, L., Schuff, N., Fein, G. & Weiner, M.W (1998). Hippocampal neuronal dysfunction in schizophrenia as measured by proton magnetic resonance spectroscopy. Biological Psychiatry 43, 483488.CrossRefGoogle ScholarPubMed
Deutch, A.Y (1992). The regulation of subcortical dopamine systems by the prefrontal cortex: interactions of central dopamine systems and the pathogenesis of schizophrenia. Journal of Neural Transmission Supplementum 36, 6189.Google ScholarPubMed
Divac, I., Kosmal, A., Bjorklund, A. & Lindvall, O (1978). Subcortical projections to the prefrontal cortex in the rat as revealed by the horseradish peroxidase technique. Neuroscience 3, 785796.CrossRefGoogle Scholar
Flores, G., Wood, G.K., Liang, J.J., Quirion, R. & Srivastava, L.K (1996). Enhanced amphetamine sensitivity and increased expression of dopamine D2 receptors in postpubertal rats after neonatal excitotoxic lesions of the medial prefrontal cortex. Journal of Neuroscience 16, 73667375.CrossRefGoogle ScholarPubMed
Frith, C.D., Friston, K.J., Herold, S., Silbersweig, D., Fletcher, P., Cahill, C., Dolan, R.J., Frackowiafc, R.S.J. & Liddle, P.F. (1995). Regional brain activityin chronic schizophrenic patients during performance of a verbal fluency task. British Journal of Psychiatry 167, 343349.CrossRefGoogle Scholar
Goldberg, T.E. & Gold, J.M. (1995). Neurocognitive deficits in schizophrenia. In Schizophrenia (ed. Hirsch, S.R. and Weinberger, D.R.), pp. 146162. Blackwell Science: OxfordGoogle ScholarPubMed
Grace, A.A (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 124.CrossRefGoogle ScholarPubMed
Hietala, J., Syvalahti, E. & Vuorio, K (1994). Striatal dopamine D2 receptor binding characteristics in neuroleptic naive schizophrenics studied with positron emission tomography. Archives of General Psychiatry 51, 116123.CrossRefGoogle Scholar
Jaskiw, G.E., Karoum, F.K. & Weinberger, D.R (1990). Persistent elevations in dopamine and its metabolites in the nucleus accumbens after mild subchronic stress in rats with ibotenic acid lesions of the medial prefrontal cortex. Brain Research 534, 321323.CrossRefGoogle ScholarPubMed
Jaskiw, G.E. & Weinberger, D.R. (1992). Dopamine and schizophrenia: a cortically corrective perspective. Seminars in Neurosciences 41, 179188CrossRefGoogle Scholar
Karreman, M. & Moghaddam, B. (1996). The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. Journal of Neurochemistry 66(2), 589598.CrossRefGoogle ScholarPubMed
Knable, M.B., Egan, M.F., Heinz, A., Gorey, J., Lee, K.S., Coppola, R. & Weinberger, D.R (1997). Evidence for a relationship between altered dopaminergic function and negative symptoms in drug-free schizophrenic patients: an 1-123 IBZM-SPECT study. British Journal of Psychiatry 171, 574577.CrossRefGoogle Scholar
Kornhuber, J., Riederer, P., Reynolds, G.P., Beckmann, H., Jellinger, K. & Gabriel, E. (1989). 3H-spiperone binding sites in postmortem brains from schizophrenic patients: relationship to neuroleptic drug treatment, abnormal movements, and positive symptoms. Journal of Neural Transmission 75, 110.CrossRefGoogle ScholarPubMed
Laruelle, M., Abi-Dargham, A., van-Dyck, C.H., Gil, R., D'Souza, C.D., Erdos, J., McKCance, E., Rosenblatt, W., Fingado, C., Zoghbi, S.S., Baldwin, R.M., Seibyl, J.P., Krystal, J.H., Charney, D.S., & Innis, R.B (1996). Single-photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proceedings of the National Academy of Science 93, 92359240.CrossRefGoogle ScholarPubMed
Lee, T., Seeman, P., Toutellotte, W.W., Farley, I.J. & Hornykiewicz, O. (1978). Binding of 3H-neuroleptics and3H-apomorphine in schizophrenic brains. Nature 274, 897900.CrossRefGoogle ScholarPubMed
Lewis, D.A. (1997). Development of prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology 16, 385398.CrossRefGoogle ScholarPubMed
Maier, M., Ron, M.A., Barker, G.J. & Tofts, P.S (1995). Proton magnetic resonance spectroscopy: an in vivo method of estimating hippocampal neuronal depletion in schizophrenia. Psychological Medicine 25, 12011209.CrossRefGoogle Scholar
Moffett, J.R. & Namboodiri, M.A (1995). Differential distribution of N-acetylaspartylglutamate and N-acetylaspartate immunoreactivities in rat forebrain. Journal of Neurocytology 24, 409433.CrossRefGoogle ScholarPubMed
Moghaddam, B. & Adams, B.W (1998). Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281, 13491352.CrossRefGoogle ScholarPubMed
Murase, S., Grenhoff, J., Chouvet, G., Gonon, F.G. & Svensson, T.H (1993). Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neuroscience Letters 157, 5356.CrossRefGoogle ScholarPubMed
Nasrallah, H.A., Skinner, T.E., Schmalbrock, P. & Robitaille, P.M (1994). Proton magnetic resonance spectroscopy of the hippocampal formation in schizophrenia: a pilot study. British Journal of Psychiatry 165, 481485.CrossRefGoogle ScholarPubMed
Perrone-Bizzozzero, N.I., Sower, A.C., Bird, E.D., Benowitz, L.I., Ivins, K.J. & Neve, R.L. (1996). Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proceedings of the National Academy of Sciences of the USA 93(24), 1418214187.CrossRefGoogle Scholar
Rajkowska, G., Selemon, L.D. & Goldman-Rakic, P.S. (1998). Neuronal and glial somal size in the prefrontal cortex. Archives of General Psychiatry 55, 215224.CrossRefGoogle ScholarPubMed
Renshaw, P.F., Yurgelun-Todd, D.A., Tohen, M., Gruber, S. & Cohen, B.M. (1995). Temporal lobe proton magnetic resonance spectroscopy of patients with first-episode psychosis. American Journal of Psychiatry 152, 444446.Google ScholarPubMed
Roberts, A.C., De Salvia, M.A., Wilkinson, L.S., Collins, P., Muir, J.L, Everitt, B.J. & Robbins, T.W. (1994). 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. Journal of Neuroscience 14, 25312544.CrossRefGoogle Scholar
Rubin, Y., LaPlaca, M.C., Smith, D.H., Thibault, L.E. & Lenkinski, R.E (1995). The effect of N-acetyl-aspartate on the intracellular calcium concentration in NTera2-neurons. Neuroscience Letters 198, 209212.CrossRefGoogle ScholarPubMed
Saunders, R.C., Kolachana, B., Bachevalier, J. & Weinberger, D.R (1998). Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Nature 393, 169171.CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P. & Montague, P.R. (1997). A neural substrate for prediction and reward. Science 275, 15931599.CrossRefGoogle ScholarPubMed
Selemon, L.D., Rajkowska, G. & Goldman-Rakic, P.S (1995). Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Archives of General Psychiatry 52, 805818.CrossRefGoogle ScholarPubMed
Shim, S.S., Bunney, B.S. & Shi, W.X. (1996). Effects of lesions in the medial prefrontal cortex on the activity of midbrain dopamine neurons. Neuropsychopharmacology 15, 437441.Google ScholarPubMed
Svensson, T.H. & Tung, C.S. (1989). Local cooling of prefrontal cortex induces pacemaker-like firing of dopamine neurons in maldeveloprat ventral tegmental area in vivo. Acta Physiologica Scandinavica 136, 135136.CrossRefGoogle ScholarPubMed
Urenjak, J., Williams, S.R., Gadian, D.G. & Noble, M. (1993). Proton nuclear magnetic resonance spectroscopy unambiguously schizophreidentifies different neural cell types. Journal of Neuroscience 13, 981989.CrossRefGoogle ScholarPubMed
Weinberger, D.R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 44, 660669.CrossRefGoogle ScholarPubMed
Weinberger, D.R. & Lipska, B.K. (1995). Cortical maldeveloprat ment, antipsychotic drugs, and schizophrenia: a search for common ground. Schizophrenia Research 16, 87110.CrossRefGoogle Scholar
Weinberger, D.R., Berman, K.F. & Zee, R.F (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow (rCBF) evidence. Archives of General Psychiatry 43, 114125.CrossRefGoogle ScholarPubMed