Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T03:46:40.484Z Has data issue: false hasContentIssue false

Organic geochemical characteristics of the Mississippian black shales from Wardie, Scotland

Published online by Cambridge University Press:  09 December 2015

Agata Trojan
Affiliation:
Institute of Geochemistry, Mineralogy & Petrology, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland Email: a.majewska@twarda.pan.pl
Maciej J. Bojanowski
Affiliation:
Institute of Geological Sciences of the Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
Marek Gola
Affiliation:
Institute of Geochemistry, Mineralogy & Petrology, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland Email: a.majewska@twarda.pan.pl
Oliwia Grafka
Affiliation:
Institute of Geochemistry, Mineralogy & Petrology, Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland Email: a.majewska@twarda.pan.pl
Leszek Marynowski
Affiliation:
Faculty of Earth Sciences, Silesian University, Będzińska 60, 42-200 Sosnowiec, Poland
Euan N. K. Clarkson
Affiliation:
School of Geosciences, University of Edinburgh, Grant Institute, West Mains Road, Edinburgh EH9 3JW, Scotland, UK

Abstract

Coal and hydrocarbons have been exploited from the Carboniferous rocks of the Midland Valley for over 200 years. This work characterises organic matter from the Mississippian black shales of the Midland Valley from Wardie, Scotland. Biomarker analysis allowed the estimation of the degree of microbial transformation of organic matter, type of kerogen and thermal maturity during hydrocarbon generation. Parameters based on the biomarker indicators confirm a generally mixed type II/III kerogen. However, some samples contain mostly terrestrial organic matter, whilst others contain predominantly marine organic matter, which shows that the sedimentary environment varied greatly throughout the basin. The presence of gammacerane suggests water column stratification and anoxic conditions. Organic matter was much better protected from post-depositional alteration within the concretions, where higher TOC (total organic carbon) and TS (total sulphur) contents occur, than in the surrounding sediments. This can be induced by very early diagenetic formation of these concretions which protected organic matter from late diagenetic degradation.

Estimated values of vitrinite reflectance (Rc, Rcs) show that the sedimentary rocks reached the catagenesis stage. Most samples exhibit maximum organic matter maturation temperatures of around c60–90°C. However, stable isomers of phenyldibenzo[b,d]thiophene detected in some samples indicate that in some cases post-depositional hydrothermal activity affected maturation of organic matter increasing temperatures to as high as c174°C.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

van Aarsen, B. G. K., Hessels, J. K. C., Abbink, O. A. & de Leeuw, J. W. 1992. The occurrence of polycyclic sesqui-, tri- and oligoterpenoids derived from resinous polymeric cadinene in crude oil from southeast Asia. Geochimica et Cosmochimica Acta 56(3), 1231–46.Google Scholar
Barker, C. E. & Pawlewicz, M. J. 1994. Calculation of Vitrinite Reflectance from Thermal Histories and Peak Temperatures. A comparison of Methods. In Mukhopadhyay, P. K. & Dow, W. G. (eds) Vitrinite reflectance as a maturity parameter: applications and limitations. ACS Symposium Series 570, 216–29. Washington, DC: American Chemical Society. 294 pp.Google Scholar
Bastow, T. P., van Aarssen, B. G. K. & Lang, D. 2007. Rapid small-scale separation of saturate, aromatic and polar components in petroleum. Organic Geochemistry 38, 1235–50.Google Scholar
Bechtel, A., Gratzer, R., Püttmann, W. & Oszczepalski, S. 2001. Variable alteration of organic matter in relation to metal zoning at the Rote Fäule front (Lubin–Sieroszowice mining district, SW Poland). Organic Geochemistry 32, 377–95.Google Scholar
Bojanowski, M. J., Bagiński, B., Clarkson, E. N. K., Macdonald, R. & Marynowski, L. 2012. Low-temperature zircon growth related to hydrothermal alteration of siderite concretions in Mississippian shales, Scotland. Contributions to Mineralogy and Petrology 164, 245–59.Google Scholar
Bojanowski, M. J., Barczuk, A. & Wetzel, A. 2014. Deep-burial alteration of early-diagenetic carbonate concretions formed in Paleozoic deep-marine greywackes and mudstones (Bardo Unit, Sudetes Mts., Poland). Sedimentology 61, 1211–39.Google Scholar
Bojanowski, M. J. & Clarkson, E. N. K. 2012. Origin of siderite concretions in microenvironments of methanogenesis developed in sulfate reduction zone: an exception or a rule? Journal of Sedimentary Research 82, 585–98.Google Scholar
Bray, E. E. & Evans, E. D. 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta 22, 215.Google Scholar
Clarkson, E. N. K. & McAdam, A. D. 1986. Granton and Wardie. In Clarkson, E. N. K. & McAdam, A. D. (eds) Lothian Geology; an excursion guide, 7780. Edinburgh, UK: Edinburgh Geological Society & Scottish Academic Press. 221 pp.Google Scholar
Didyk, B. M., Simoneit, B. R. T., Brassel, S. C. & Eglinton, G. 1978. Organic geochemical indicators of palaeonvironmental conditions of sedimentation. Nature 272, 216–22.Google Scholar
Fabiańska, M. 2007. [Organic geochemistry of brown coals from the selected Polish basins.] Katowice: University of Silesia. 319 pp. [In Polish.]Google Scholar
Farrimond, P., Taylor, A. & Telnæs, N. 1998. Biomarker maturity parameters: the role of generation and thermal degradation. Organic Geochemistry 29, 1181–97.Google Scholar
George, S. C. 1992. Effect of igneous intrusion on the organic geochemistry of a siltstone and an oil shale horizon in the Midland Valley of Scotland. Organic Geochemistry 18, 705–24.Google Scholar
George, S. C. 1993. Black sandstones in the Midland Valley of Scotland: thermally metamorphosed hydrocarbon reservoirs? Transactions of the Royal Society of Edinburgh: Earth Sciences 84, 6172.Google Scholar
Gough, M. A. & Rowland, S. J. 1990. Characterization of Unresolved Complex-Mixtures of Hydrocarbons in Petroleum. Nature 344, 648–50.Google Scholar
Grafka, O., Marynowski, L. & Simoneit, B. R. T. 2015. Phenyl derivatives of polycyclic aromatic compounds as indicators of hydrothermal activity in the Silurian black siliceous shales of the Bardzkie Mountains, Poland. International Journal of Coal Geology 139, 142–51.Google Scholar
ten Haven, H. L., Rohmer, M., Rullkotter, J. & Bisseret, P. 1989. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochimica et Cosmochimica Acta 53, 3073–79.Google Scholar
Huang, W. Y. & Meinschein, W. G. 1979. Steroles as source indicators of organic materials in sediments. Geochimica et Cosmochimica Acta 40(3), 323–30.Google Scholar
Killops, S. & Killops, V. 2005. Introduction to Organic Geochemistry. Oxford: Blackwell Publishing. 408 pp.Google Scholar
Marynowski, L., Narkiewicz, M. & Grelowski, C. 2000. Biomarkers as environmental indicators in a carbonate complex, example from the Middle to Upper Devonian, Holy Cross Mts., Poland. Sedimentary Geology 137, 187212.Google Scholar
Marynowski, L., Rospondek, M. J., Meyer zu Reckendorf, R. & Simoneit, B. R. T. 2002. Phenyldibenzofurans and phenyldibenzothiophenes in marine sedimentary rocks and hydrothermal petroleum. Organic Geochemistry 33, 701–14.Google Scholar
Marynowski, L., Kurkiewicz, S., Rakociński, M. & Simoneit, B. R. T. 2011. Effects of weathering on organic matter: I. Changes in molecular composition of extractable organic compounds caused by paleoweathering of a Lower Carboniferous (Tournaisian) marine black shale. Chemical Geology 285, 144–56.Google Scholar
Moldowan, J. M., Seifert, W. K. & Gallegos, E. J. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologists Bulletin 69, 1255–68.Google Scholar
Monaghan, A. A. 2014. The Carboniferous shales of the Midland Valley of Scotland: geology and resource estimation. London, UK: British Geological Survey for Department of Energy and Climate Change. viii+96 pp.Google Scholar
Otto, A. & Simoneit, B. R. T. 2001. Chemosystematic and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochimica et Cosmochimica Acta 65, 3505–27.Google Scholar
Peters, K. E., Walters, C. C. & Moldowan, J. M. 2005a. The Biomarker Guide, Volume 1. Biomarkers and Isotopes in the Environment and Human History. 2nd Edition. Cambridge, UK: Cambridge University Press. 704 pp.Google Scholar
Peters, K. E., Walters, C. C. & Moldowan, J. M. 2005b. The Biomarker Guide, Volume 2. Biomarkers and Isotopes in Petroleum Systems and Earth History. 2nd Edition. Cambridge, UK: Cambridge University Press. 704 pp.Google Scholar
Radke, M., Welte, D. H. & Wilsch, H. 1986. Maturity parameters based on aromatic hydrocarbons Influence of organic matter type. Organic Geochemistry 10, 5163.Google Scholar
Radke, M., Vriend, S. P. & Ramanampisoa, L. R. 2000. Alkildibenzofurans in terrestrial rocks, Influence of organic facies and maturation. Geochimica et Cosmochimica Acta 64, 275–86.Google Scholar
Radke, M. & Welte, D. H. 1983. The methylphenanterne index (MPI): a maturity parameter based on aromatic hydrocarbons. In Bjorøy, M., Albrecht, P., Cornford, C., de Groot, K., Eglinton, G., Galimov, E., Leythaeuser, D., Pelet, R., Rullkötter, J. & Speers, G. (eds) Advances in Organic Geochemistry, 504–12. (Proceedings of the 10th International Meeting on Organic Geochemistry, University of Bergen, Norway, September 14–18, 1981.) Chichester, UK: John Wiley & Sons. xxi+880 pp.Google Scholar
Radke, M. & Willsch, H. 1994. Extractable alkyldibenzothiophenes in Posidonia shale (Toarcian) Skurce rocks: Relationship of yields to petroleum formation and expulsion. Geochimica et Cosmochimica Acta 58, 5223–44.Google Scholar
Rospondek, M. J., Marynowski, L. & Góra, M. 2007. Novel arylated polycyclic aromatic thiophenes: phenylnaphtho[b]thiophenes and naphthylbenzo[b]thiophenes as markers of the organic matter oxidation by rock-water interaction. Organic Geochemistry 38, 1729–56.Google Scholar
Rospondek, M. J., Szczerba, M., Małek, K., Góra, M. & Marynowski, L. 2008. Comparison of phenyldibenzothiophene distributions predicted by molecular modelling with relevant experimental and geological data. Organic Geochemistry 39, 1800–15.Google Scholar
Simoneit, B. R. T. 1977. Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochimica et Cosmochimica Acta 41, 463–76.Google Scholar
Sinninghe-Damsté, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J. M. & de Leeuw, J. W. 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta 59, 18951900.Google Scholar
Speczik, S. & Püttmann, W. 1987. Origin of Kupferschiefer mineralization as suggested by coal petrology and organic geochemical studies. Acta Geologica Polonica 37, 167–87.Google Scholar
Sun, Y. Z. 1998. Influence of secondary oxidation and sulfide formation on several maturity parameters in Kupferschiefer. Organic Geochemistry 29, 1419–29.Google Scholar
Szczerba, M. & Rospondek, M. J. 2010. Controls on distributions of methylphenanthrenes in sedimentary rock extracts: critical evaluation of existing geochemical data from molecular modelling. Organic Geochemistry 41, 12971311.Google Scholar
Tissot, B. P. & Welte, D. H. 1984. Petroleum formation and occurrence. 2nd Edition. Dordrecht: Springer Verlag. 728 pp.Google Scholar
Wildman, R. A., Berner, R. A., Petsch, S. T., Bolton, E. W., Eckert, J. O., Mok, U. & Evans, J. B. 2004. The weathering of sedimentary organic matter as a control on atmospheric O2: I. Analysis of a black shale. American Journal of Science 304, 234–49.Google Scholar