Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T08:56:51.140Z Has data issue: false hasContentIssue false

Mineralogical and Rb-Sr Isotope Studies of Low-Temperature Diagenesis of Lower Cambrian Clays of the Baltic Paleobasin of north Estonia

Published online by Cambridge University Press:  28 February 2024

Kalle Kirsimäe
Affiliation:
Institute of Geology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
Per Jørgensen
Affiliation:
Department of Soil and Water Sciences, Agricultural University of Norway, B.P. 5028, 1432 Aas, Norway
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray diffraction (XRD), Rb-Sr isotope analysis, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared (FTIR) methods were used to study diagenetic illite and illite-smectite (I-S) in Lower Cambrian unlithified clays of shallow depth of burial in the northern part of the intercratonic Baltic paleosedimentary basin of the East-European Platform. The studies focused on the <0.06-µm size fraction of the clay. This fraction consists of a highly illitic illite-smectite (I-S) and a poorly crystalline illite (PCI), with some traces of Fe-rich chlorite also present. Rb-Sr isotopic data for the <0.06-µm size fractions suggest that the illitic I-S and PCI have different formation ages. No precise isotopic ages were derived directly owing to the composite illite mineralogy and retention of radiogenic Sr. This retention occurred because of imperfect isotopic homog-enization at low water/rock ratios. The age of burial diagenesis is proposed to coincide with the time of maximum burial depth, which was achieved during the Middle to Late Devonian and continued until Permian-Triassic erosion. Because of the shallow depth of burial (<2 km), diagenesis was probably a low-temperature (<50°C) transformation process. The resident time of 100–150 million years at maximum burial had a major influence in the process.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Ahn, J.H. and Peacor, D.R., 1986 Transmission and analytical electron microscopy of the smectite-to-illite transition. Clays and Clay Minerals 34 165179 10.1346/CCMN.1986.0340207.Google Scholar
Altaner, S.P. and Ylagan, R.F., 1997 Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays and Clay Minerals 45 517533.CrossRefGoogle Scholar
Bergström, S.M., 1980 Conodonts as paleotemperature tools in Ordovician rocks of the Caledonides and adjacent areas in Scandinavia and the British Isles. Geologiska Förenin-gens i Stockholm Förhandlingar 102 377392 10.1080/11035898009454495.CrossRefGoogle Scholar
Boles, J.F. and Franks, S.G., 1979 Clay diagenesis in Wilcox sandstones of southwest Texas, implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology 49 5570.Google Scholar
Borchardt, G.A., Dixon, J.B. and Weed, S.B., 1977 Montmorillionite and other smectities minerals Minerals in Soil Environments Wisconsin Soil Science Society of America, Madison 299330.Google Scholar
Buatier, M.D. Peacor, D.R. and O’Neil, J.R., 1992 Smec-tite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for dissolution/crystallization at low temperature. Clays and Clay Minerals 40 6580 10.1346/CCMN.1992.0400108.CrossRefGoogle Scholar
Burst, J.F., 1969 Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration. American Association of Petroleum Geologists Bulletin 53 7393.Google Scholar
Compston, W. Sambridge, M.S. Reinfrank, R.F. Moc-zydllowska, M. Vidal, G. and Claesson, S., 1995 Numerical ages of volcanic rocks and the earliest faunal zone within the Late Precambrian of east Poland. Journal of the Geological Society (London) 152 599611 10.1144/gsjgs.152.4.0599.CrossRefGoogle Scholar
Cuadros, J. and Linares, J., 1996 Experimental kinetic study of the smectite-to-illite transformation. Geochimica et Cosmochimica Acta 60 439453 10.1016/0016-7037(95)00407-6.CrossRefGoogle Scholar
Eberl, D.D., 1993 Three zones for illite formation during burial diagenesis and metamorphism. Clays and Clay Minerals 41 2637 10.1346/CCMN.1993.0410103.CrossRefGoogle Scholar
Epstein, A.G. Epstein, J.B. and Harris, L.D., 1977 Cono-dont Color Alteration—An Index to Organic Metamorphism. Washington, D.C. U.S. Geological Survey Professional Paper 995.Google Scholar
Essene, E.J. and Peacor, D.R., 1995 Clay mineral thermometry—a critical perspective. Clays and Clay Minerals 43 540553 10.1346/CCMN.1995.0430504.CrossRefGoogle Scholar
Felitsyn, S. Sturesson, U. Popov, L. and Holmer, L., 1998 Nd isotope composition and rare earth element distribution in early Paleozoic biogenic apatite from Baltoscandia: A signature of Iapetus ocean water. Geology 26 10831086 10.1130/0091-7613(1998)026<1083:NICARE>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Firsov, L. Nikolajeva, I. Lebedev, Y. and Solntseva, S., 1971 Composition, origin and absolute age of micaceous minerals in Lower Cambrian blue clays of the Baltic Region. Transactions of the Institute of Geology and Geophysics, Academy of Sciences of the USSR, Siberian Branch 144 165192.Google Scholar
Freed, R.L. and Peacor, D.R., 1989 Variability in temperature of the smectite illite reaction in Gulf Coast sediments. Clay Minerals 24 171180 10.1180/claymin.1989.024.2.05.CrossRefGoogle Scholar
Freed, R.L. and Peacor, D.R., 1992 Diagenesis and the formation of authigenic illite-rich I/S crystals in Gulf Coast Shales: TEM study of clay separates Journal of Sedimentary Petrology 62 220234.Google Scholar
Gorokhov, I.M. Clauer, N. Turchenco, T.L. Melnikov, N.N. Kutyavin, E.P. Pirrus, E. and Baskakov, A.V., 1994 Rb-Sr systematics of Vendian-Cambrian claystones from the east European Platform: Implications for a multi-stage illite evolution. Chemical Geology 112 7189 10.1016/0009-2541(94)90105-8.CrossRefGoogle Scholar
Gradstein, F.M. and Ogg, J., 1996 A Phanerozoic time scale. Episodes 19 35.CrossRefGoogle Scholar
Hagenfeldt, S., 1996 Lower Palaeozoic acritarchs as indicators of heat flow and burial depth of sedimentary sequences in Scandinavia. Acta Universitatis Carolinae, Geologica 40 413424.Google Scholar
Hayes, J.M. Kaplan, L.R. Wedekning, K.M. and Schopf, J.W., 1983 Precambrian organic geochemistry, preservation of the record Earth’s Earliest Biosphere, its Origin and Evolution Princeton Princeton University Press 93134.Google Scholar
Hoffman, J. and Hower, J., 1979 Clay minerals assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, USA. Society of Economic Paleontologists and Mineralogists Special Publication 26 5579.Google Scholar
Hover, V.C. Peacor, D.R. and Lynn, M.W., 1996 STEM/ AEM evidence for preservation of burial diagenetic fabrics in Devonian shales: Implications for fluid/rock interaction in cratonic basins (U.S.A.). Journal of Sedimentary Research 66 519530.Google Scholar
Hower, J. Eslinger, E.V. Hower, M.E. and Perry, E.A., 1976 Mechanisms of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Huang, W.L. Longo, J.M. and Pevear, D.R., 1993 An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays and Clay Minerals 41 162177 10.1346/CCMN.1993.0410205.CrossRefGoogle Scholar
Kaufman, A.J. Knoll, A.H. Semikhatov, M.A. Grotzinger, J.E. Jacobsen, S.B. and Adams, W., 1996 Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the Western Anabar region, Northern Siberia. Geological Magazine 133 509533 10.1017/S0016756800007810.CrossRefGoogle ScholarPubMed
Kirsimäe, K. Jørgensen, P. and Kalm, V., 1999 Low temperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals 34 151163 10.1180/000985599546000.CrossRefGoogle Scholar
Kirsimäe, K. Kalm, V. and Jørgensen, P., 1999 Diagenetic transformation of clay minerals in Lower Cambrian argillaceous sediments of north Estonia. Proceedings of the Estonian Academy of Sciences, Geology 48 1534.Google Scholar
Kurss, V., 1992 Devonian Terrigenous Deposition on the “Main Devonian Field”. Riga Zinatne.Google Scholar
Lahann, R.W., 1980 Smectite diagenesis and sandstone cement: The effect of reaction temperature. Journal of Sedimentary Petrology 50 755760 10.1306/212F7AD6-2B24-11D7-8648000102C1865D.CrossRefGoogle Scholar
Lanson, B., 1997 Decomposition of experimental X-ray diffraction patterns (profile fitting): A convenient way to study clay minerals. Clays and Clay Minerals 45 132146 10.1346/CCMN.1997.0450202.CrossRefGoogle Scholar
Lanson, B. and Champion, D., 1991 The I/S-to-illite reaction in the late stage diagenesis. American Journal of Science 291 473506 10.2475/ajs.291.5.473.CrossRefGoogle Scholar
Lanson, B. and Velde, B., 1992 Decomposition of X-ray diffraction patterns: A convenient way to describe complex I-S diagenetic evolution Clays and Clay Minerals 40 629643 10.1346/CCMN.1992.0400602.CrossRefGoogle Scholar
Larson, S.-A. and Tullborg, E.-L., 1998 Why Baltic Shield zircons yield late Paleozoic, lower-intercept ages on U-Pb concordia? Geology 26 919922 10.1130/0091-7613(1998)026<0919:WBSZYL>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Li, G. Mauk, J.L. and Peacor, D.R., 1995 Preservation of clay minerals in the Precambrian (1.1 Ga) Nonesuch Formation in the vicinity of the White Pine copper mine, Michigan. Clays and Clay Minerals 43 361370 10.1346/CCMN.1995.0430311.CrossRefGoogle Scholar
Mändar, H. Vajakas, T. Felche, J. and Dinnebier, R., 1996 AXES—a program for preparation of parameter input files for FULLPROE Journal of Applied Crystallography 29 304 10.1107/S0021889895014993.CrossRefGoogle Scholar
Männik, P. Viira, V., Kaljo, D. and Nestor, H., 1990 Conodonts Field Meeting Estonia 1990. An Excursion Guidebook 8490.Google Scholar
Mens, K. and Pirrus, E., 1977 Stratotypes of the Cambrian Formations of Estonia. Tallinn Valgus.Google Scholar
Mens, K. and Pirrus, E., 1986 Stratigraphical characteristics and development of Vendian Cambrian boundary beds on the East European Platform. Geological Magazine 123 357360 10.1017/S0016756800033446.CrossRefGoogle Scholar
Mens, K. Pirrus, E., Raukas, A. and Teedumäe, A., 1997 Cambrian Geology and Mineral Resources of Estonia Tallinn Estonian Academy Publishers 3948.Google Scholar
Mens, K. Pirrus, E., Raukas, A. and Teedumae, A., 1997 Vendian-Tremadoc clasto-genic sedimentation basins Geology and Mineral Resources of Estonia Tallinn Estonian Academy Publishers 184191.Google Scholar
Mens, K. Bergström, J. and Lendzion, K., 1990 The Cambrian System on the East-European Platform. Correlation Chart and Explanatory Notes. .Google Scholar
Meunier, A. and Velde, B., 1989 Solid solutions in illite/ smectite mixed layer minerals and illite. American Mineralogist 74 11061112.Google Scholar
Moczydlowska, M. and Vidal, G., 1988 How old is Tom-motian? Geology 16 166168 10.1130/0091-7613(1988)016<0166:HOITT>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Mokrik, R., 1997 The Plaeohydrogeology. of the Baltic Basin: Vendian and Cambrian. Tartu Tartu University Press.Google Scholar
Moore, D.M. and Hower, J., 1986 Ordered interstratification of dehydrated and hydrated Nasmectite. Clays and Clay Minerals 34 379384 10.1346/CCMN.1986.0340404.CrossRefGoogle Scholar
Mossmann, J.-R., 1991 K-Ar dating of authigenic illite-smectite clay material: Application to complex mixtures of mixed-layer assemblages. Clay Minerals 26 189198 10.1180/claymin.1991.026.2.04.CrossRefGoogle Scholar
Nadeau, P.H. Wilson, M.J. McHardy, W.J. and Tait, J.M., 1985 The conversion of smectite to illite during diagen-esis: Evidence from some illitic clays from bentonites and sandstones. Mineralogical Magazine 49 393400 10.1180/minmag.1985.049.352.10.CrossRefGoogle Scholar
Nestor, H. Einasto, R., Raukas, A. and Teedumäe, A., 1997 Ordovician and Silurian carbonate sedimentation basin Geology and Mineral Resources of Estonia Tallinn Estonian Academy Publishers 192204.Google Scholar
Pirrus, E., 1970 The distribution of clay minerals of Vendian and Cambrian deposits in east Estonia. Eesti NSV Teaduste Akadeemia Toimetised, Keemia, Geoloogia 19 322333.CrossRefGoogle Scholar
Pirrus, E. and Viiding, H., 1983 The role of the palaeogeographic factor in the development of associations of clay minerals in Vendian and Cambrian basins in the north Baltic Terrigenous Minerals of the Baltic Sedimentary Rocks Tallinn Academy of Sciences, Estonian SSR, Institute of Geology 7691.Google Scholar
Pirrus, E. and Saarse, L., 1979 Geotechnical properties of the Cambrian clays in north Estonia. Eesti NSV Teaduste Akadeemia Toimetised, Keemia, Geoloogia 28 6874.Google Scholar
Pollastro, R., Nuccio, V.F. and Barker, C.E., 1990 The illite/smectite geofhermometry-Concepts, methodology, and application to basin history and hydrocarbon generation Applications of Thermal Maturity Studies to Energy Exploration, Rocky Mountain Section Tulsa Society of Economic Paleontologists and Mineralogists 118.Google Scholar
Pollastro, R., 1993 Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age Clays and Clay Minerals 41 119133 10.1346/CCMN.1993.0410202.CrossRefGoogle Scholar
Powers, M.C., 1967 Fluid-release mechanisms in compacting marine mudrocks and their importance in oil exploration Bulletin of American Association of Petroleum Geologists 51 2536.Google Scholar
Puura, V. Aliavdin, F. Amantov, A. Korsakova, M. and Grigelis, A.A., 1991 Intrusive formation Geology and Geomorphology of the Baltic Sea Leningrad Nedra 257266.Google Scholar
Pytte, A.M. and Reynolds, R.C. Jr., Naeser, N.D. and McCulloh, T.H., 1989 The thermal transformation of smectite to illite Thermal History of Sedimentary Basins: Methods and Case Histories New York Springer-Verlag 133140 10.1007/978-1-4612-3492-0_8.CrossRefGoogle Scholar
Ransom, B. and Helgeson, H.C., 1993 Compositional end members and thermodynamic components of illite and dioctahedral aluminous smectite solid solutions. Clays and Clay Minerals 41 537550 10.1346/CCMN.1993.0410503.CrossRefGoogle Scholar
Reier, A., 1965 Mineralogical peculiarities of Cambrian clays of Estonian SSR. Tallinna Poliitehnilise Instuudi Toimetised 221 311.Google Scholar
Reier, A., 1967 Authigenic minerals in clays of Lontova Formation. Tallinna Poliitehnilise Instituudi Toimetised 246 1925.Google Scholar
Reynolds, R.C. Jr. (1985) NEWMOD, a computer program for the calculation of one-dimensional patterns of mixed-layered clays. Reynolds, R.C. Jr., 8 Brook Rd., Hanover, New Hampshire.Google Scholar
Rozanov, A.Y. and Lydka, K., 1987 Palaeography and Lithology of the Vendian and Cambrian of the Western East-European Platform. Warsaw Wydawnictwa Geologiczne.Google Scholar
Russel, J.D. and Wilson, M.J., 1987 Infrared methods A Handbook of Determinative Methods in Clay Mineralogy. New York Chapman and Hall 133173.Google Scholar
Sato, T. Takashi, W. and Otsuka, R., 1992 Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals 40 103113 10.1346/CCMN.1992.0400111.CrossRefGoogle Scholar
Small, J.S., 1994 Fluid composition, mineralogy and morphological changes associated with the smectite-to-illite reaction: An experimental investigation of the effect of organic acid anions. Clay Minerals 29 539554 10.1180/claymin.1994.029.4.11.CrossRefGoogle Scholar
Środoń, J., 1984 X-ray powder diffraction identification of illitic minerals. Clays and Clay Minerals 32 337349 10.1346/CCMN.1984.0320501.CrossRefGoogle Scholar
Środoń, J E F McHardy, W.J. and Morgan, D.J., 1992 Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Minerals 28 137158 10.1180/claymin.1992.027.2.01.CrossRefGoogle Scholar
Steiger, R.H. and Jäger, E., 1977 Subcommision on geo-chronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36 359362 10.1016/0012-821X(77)90060-7.CrossRefGoogle Scholar
Sundvoll, B. Neumann, E.-R. Larsen, B.T. and Tuen, E., 1990 Age relations among Oslo rift magmatic rocks: Implications for tectonic and magmatic modelling. Tectono-physics 178 6787 10.1016/0040-1951(90)90460-P.CrossRefGoogle Scholar
Talyzina, N.M., 1998 Fluorescence intensity in Early Cambrian acritarchs from Estonia. Review of Paleobotany and Palynology 100 99108 10.1016/S0034-6667(97)00059-6.CrossRefGoogle Scholar
Tullborg, E.-L. Larson, S-Å Björklund, L. Samuelsson, L. and Stigh, J., 1995 Thermal Evidence of Caledonide Foreland, Molasse Sedimentation in Fennoscandia. Stockholm Svensk Kärnbränslehantering AB Technical Report 95-18, Swedish Nuclear Fuel and Waste Management Co..Google Scholar
Velde, B. and Espitaliè, J., 1989 Comparison of kerogen maturation and illite/smectite composition in diagenesis. Journal of Petroleum Geology 12 103110 10.1111/j.1747-5457.1989.tb00223.x.CrossRefGoogle Scholar
Velde, B. Suzuki, T. and Nicot, E., 1986 Pressure-temperature composition of illite/smectite mixed-layer minerals: Niger Delta mudstones and other examples. Clays and Clay Minerals 34 435441 10.1346/CCMN.1986.0340410.CrossRefGoogle Scholar
Volkova, N.A. Kiryanov, V.V. Piskun, L.V. and Rudavskaya, V.A., 1990 ) All-Union colloquium on Precambrian and Lower Palaeozoic acritarchs Geologicheskij Zhurnal 6 132133.Google Scholar
Whitney, G., 1990 The role of the water in the smectite to illite reaction. Clays and Clay Minerals 38 343350 10.1346/CCMN.1990.0380402.CrossRefGoogle Scholar
Ziegler, P.A., 1982 Geological Atlas of Western and Central Europe. Amsterdam Shell Internationale Petroleum Maatschappij B.V., Elsevier.Google Scholar