Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T03:56:20.476Z Has data issue: false hasContentIssue false

Tetrahedral charge and Fe content in dioctahedral smectites

Published online by Cambridge University Press:  02 January 2018

S. Kaufhold*
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany
J.W. Stucki
Affiliation:
Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, USA
N. Finck
Affiliation:
Karlsruher Institut für Technologie, Institut für Nukleare Entsorgung, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
R. Steininger
Affiliation:
Karlsruher Institut für Technologie, Institut für Synchrotronstrahlung ANKA, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
A. Zimina
Affiliation:
Karlsruher Institut für Technologie, Institut für Katalyseforschung und-technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
R. Dohrmann
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover, Germany
K. Ufer
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany
M. Pentrák
Affiliation:
Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, USA
L. Pentráková
Affiliation:
Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, USA
*

Abstract

Natural aluminosilicates can contain Fe in tetrahedral or octahedral coordination. Amongst smectites, tetrahedral iron is known to occur in Fe-rich nontronites but few indications exist for the presence of tetrahedral Fe in smectites of the montmorillonite–beidellite series. A set of 38 different bentonites showed a correlation of tetrahedral charge and Fe content in their smectites. All materials with large tetrahedral charge were rich in Fe. This could be explained by a general tendency of Fe to enter the tetrahedral sheet. To investigate this correlation, nine materials were selected and investigated by Mössbauer, UV-Vis, Fe K pre-edge and EXAFS spectroscopy with respect to tetrahedral Fe (Fe[IV]). The latter two methods were at the detection limit but Mössbauer and UV-Vis spectroscopy provided consistent results indicating the significance of both methods in spite of some scatter caused by the overall small amount of tetrahedral Fe. The results indicate the absence of any relation between Fe content and tetrahedral Fe. Tetrahedral Fe can be present in Fe-poor smectites and absent in the case of Fe-rich materials. This means that Fe-rich montmorillonites have a larger tetrahedral charge which is not caused by Fe[IV] but by Al[IV]. A possible explanation for this indirect relation is based on: the coordination of Al3+ in the weathering/smectite-forming solutions determines the coordination in the precipitates; and the Al[IV/VI] ratio increases with increasing pH. The correlation could thus be explained if the pH of weathering solutions generally was higher in Fe-rich parent smectite rocks than in more acidic smectite parent rocks. The relation between tetrahedral charge and Fe content can probably be explained by different geochemical contexts throughout the formation of smectites which affect the coordination of dissolved Al.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ankudinov, A.L., Ravel, B., Rher 11 & Conradson, S.D. (1998) Real space multiple scattering calculation of XANES. Physical Review B, 58, 75657576.Google Scholar
Badraoui, M. & Bloom, P.R. (1990) Iron-rich high-charge beidellite in Vertisols and Mollisols of the High Chaouia region of Morocco. Soil Science Society of America Journal, 54, 267274.CrossRefGoogle Scholar
Bishop, J.L., Murad, E., Madejova, I., Komadel, P., Wagner, U. & Scheinost, A. (1999) Visible, Mössbauer and infrared spectroscopy of dioctahedral smectites: Structural analyses of the Fe-bearing smectites Sampor, SWy-1 and SWa-1. 11th International Clay Conference, June, 1997, Ottawa, 413-419.Google Scholar
Bujdak, I., Janek, M., Madejova, I. & Komadel, P. (2001) Methylene blue interactions with reduced-charge smectites. Clays and Clay Minerals, 49, 244254.Google Scholar
Decarreau, A. & Petit, S. (2014) Fe3+/Al3+ partitioning between tetrahedral and octahedral sites in dioctahedral smectites. Clay Minerals, 49, 657665.Google Scholar
Dohrmann, R. & Kaufhold, S. (2009) Three new, quick CEC methods for determining the amounts of exchangeable calcium cations in calcareous clays. Clays and Clay Minerals, 57, 338352.Google Scholar
Dohrmann, R. & Kaufhold, S. (2010) Determination of exchangeable calcium of calcareous and gypsiferous bentonites. Clays and Clay Minerals, 58, 7988.Google Scholar
Finck, N., Schlegel, M.L. & Bauer, A. (2015) Structural iron in dioctahedral and trioctahedral smectites: a polarized XAS study. Physics and Chemistry of Minerals, 42, 847859.Google Scholar
Gates, W.P., Slade, P.G., Lanson, B. & Manceau, A. (2002) Site occupancies by iron in nontronites. Clays and Clay Minerals, 50, 223239.Google Scholar
Gislason, S.R., Arnorsson, S. & Armannsson, H. (1996) Chemical weathering of basalt in southwest Iceland: Effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296, 837907.Google Scholar
Heuser, M., Andrieux, P., Petit, S. & Stanjek, H. (2013) Iron-bearing smectites: A revised relationship between structural Fe, b cell edge lengths and refractive indices. Clay Minerals, 48, 97103.CrossRefGoogle Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung. Zeitschrift für anorganische Chemie, 262, 9599.Google Scholar
Kaufhold, S. & Dohrmann, R. (2003) Beyond the Methylene Blue method: determination of the smectite content using the Cu-trien method. Zeitschrift für Angewandte Geologie, 2, 1318.Google Scholar
Kaufhold, S. & Dohrmann, R. (2008) Detachment of colloidal particles from bentonites in water. Applied Clay Science, 39, 5059.Google Scholar
Kaufhold, S. & Dohrmann, R. (2013) The variable charge of dioctahedral clay minerals. Journal of Colloid and Interface Science, 390, 225233.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Koch, D. & Houben, G. (2008) The pH of aqueous bentonite suspensions. Clays and Clay Minerals, 56, 338343.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Stucki, J. & Anastácio, A.S. (2011a) Layer charge density of montmorillonite — closing the gap between structural formula method and alkyl ammonium method. Clays and Clay Minerals, 59, 200211.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Ufer, K., Kleeberg, R. & Stanjek, H. (2011b) Cu trien exchange to improve the analytical understanding of smectites. Clay Minerals, 46, 411420.Google Scholar
Kaufhold, S., Hein, M., Dohrmann, R. & Ufer, K. (2012) Quantification of the mineralogical composition of clays using FTIR spectroscopy. Journal ofVibrational Spectroscopy, 59, 2939.CrossRefGoogle Scholar
de Kimpe, C., Gastuche, M.C. & Brindley, G.W. (1961) ionic coordination in alumino-silicic gels in relation to clay mineral formation. American Mineralogist, 46, 13701381.Google Scholar
Köster, H.M. (1977) Die Berechnung kristallchemischer Strukturformeln von 2:1-Schichtsilikaten unter Berücks ichtigung der gemessenen Zwischenschichtladungen und Kationenumtauschkapazitäten sowie die Dars tellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten. Clay Minerals, 12, 4554.CrossRefGoogle Scholar
Manceau, A., Lanson, B., Drits, V.A., Chateigner, D., Gates, W.P., Wu, J., Huo, D. & Stucki, J.W. (2000a) Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites. American Mineralogist, 85, 133152.Google Scholar
Manceau, A., Drits, V.A., Lanson, B., Chateigner, D., Wu, J., Huo, D., Gates, W.P. & Stucki, J.W. (2000b) Oxidation-reduction mechanism of iron in dioctahedral smectites: II. Crystal chemistry of reduced Garfield nontronite. American Mineralogist, 85, 153172.Google Scholar
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of Copper (II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386388.Google Scholar
Merola, R.B. & McGuire, M.M. (2009) Crystallographic site distribution and redox activity of Fe in nontronites determined by optical spectroscopy. Clays and Clay Minerals, 57, 771778.CrossRefGoogle Scholar
Paquet, H. (1970) Evolution géochimique des minéraux argileux dans les altérations et les sols des sédiments méditerrannéens et tropicaux à saisons contrastées. Mémoire de la Service Carte Géologique Alsace Lorraine, 30, 212.Google Scholar
Ravel, B. & Newville, M. (2005) Athena, artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537541.Google Scholar
Ryan, P.C. & Huertas, F.J. (2009) The temporal evolution of pedogenic Fe-smectite to Fe-kaolin via interstratified kaolin-smectite in a moist tropical soil chronose-quence. Geoderma, 151, 115.CrossRefGoogle Scholar
Tsipursky, S.I. & Drits Y (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Minerals, 19, 177193.Google Scholar
Ufer, K., Roth, G., Kleeberg, R., Stanjek, H., Dohrmann, R. & Bergmann, J. (2004) Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach. Zeitschrift für Kristallographie, 219, 519527.Google Scholar
Vantelon, D., Montarges-Pelletier, E., Michot, L.J., Briois, Y., Pelletier, M. & Thomas, F. (2003) Iron distribution in the octahedral sheet of dioctahedral smectites. An Fe K-edge X-ray absorption spectroscopy study. Physics and Chemistry of Minerals, 30, 4453.Google Scholar
Violet, C.E. & Pipkorn, D.N. (1971) Mössbauer Line Positions and Hyperfine Interactions in α Iron. Journal of Applied Physics, 42, 4339–433.Google Scholar
Waychunas, G.A., Apted, M.J. & Brown, G.E. Jr. (1983) X-ray K-edge absorption spectra of Fe minerals and model compounds: near-edge structure. Physics and Chemistry of Minerals, 10, 19.Google Scholar
Weaver, C.E. & Pollard, L.D. (1975) The Chemistry of Clay Minerals. Developments in Sedimentology, 15, Elsevier, Amsterdam, 213 pp.Google Scholar
Westre, T.E., Kennepohl, P., DeWitt, J.G., Hedman, B., Hodgson, K.O. & Solomon, E.I. (1997) A multiplet analysis of Fe K-Edge 1 s f 3d pre-edge features of iron complexes. Journal of the American Chemical Society, 119, 62976314.Google Scholar
Wilke, M., Farges, F., Petit, P.-E., Brown, G.E. Jr. & Martin, F. (2001) Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study. American Mineralogist, 86, 714730.Google Scholar
Wu, J., Xia, Y. & Stucki, J.W. (2004) Color temperature indicator. U.S. Patent No. 6,712,996.Google Scholar