Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T16:03:11.492Z Has data issue: false hasContentIssue false

Land erosion and associated evolution of clay minerals assemblages from soils to artificial lakes in two distinct climate regimes in Portugal and Brazil

Published online by Cambridge University Press:  09 July 2018

R. Fonseca*
Affiliation:
Department of Geosciences, University of Évora, 7002-554 Évora, Creminer LA/ISR, Faculty of Sciences, University of Lisbon, Campo Grande, 1794-016 Lisbon, Portugal
F. J. A. S. Barriga
Affiliation:
Department of Geology and Creminer LA/ISR, Faculty of Sciences, University of Lisbon, Campo Grande, 1794-016 Lisboa, Portugal
K. Tazaki
Affiliation:
Department of Earth Sciences, Faculty of Science, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
*

Abstract

Given that reservoirs contain most of the leached materials from soils, we have studied the sediments accumulated in the bottom of two groups of reservoirs developed under different climatic conditions and thus with contrasting rates of weathering/erosion regimes. Through detailed comparative study of clay minerals of the parent rocks and soils with the clay fractions of the dam sediments, we have concluded that, during cycles of erosion-transport-deposition, the leached materials have complex transformation mechanisms, making them much more active in the environment. All clay-mineral groups are well represented in the reservoir sediments, including abundant mixed-layer and partly disordered minerals. Moreover, the sediments are nutrient-rich and potentially useful as agricultural fertilizers and hence in reversing the declining soil productivity in some regions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, M.M. (1986) Aspectos do Comportamento do Ferro na Crusta de Meteorização - Alto e Baixo Alentejo. PhD thesis, Univ. Technique of Lisbon, Portugal 250 pp. (in Portuguese).Google Scholar
Berner, E.K. & Berner, R.A. (1996) Global Environment: Water, Air and Geochemical Cycles, pp. 141307, Prentice Hall, Inc. Google Scholar
Brattli, B. (1997) A rectorite-pyrophyllite-chlorite-illite assemblage in pelitic rocks from Colombia. Clay Minerals, 32, 425434.Google Scholar
Brindley, G.W. (1981) X-ray identification (with ancillary techniques) of clay minerals. Pp. 2235 in: Short Course in Clays and the Resource Geologist (Longstaffe, F.J., editor), Mineralogical Association of Canada.Google Scholar
Brown, G. & Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 305359 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors), Mineralogical Society, Monograph 5, London.Google Scholar
Buey, C.S., Barrios, M.S., Romero, E.G., Diaz, M.C.D. & Montoya, D. (1998) Electron microscopic study of the illite-smectite transformation in the bentonites from Cerro del Aguila (Toledo, Spain). Clay Minerals, 33, 501510.Google Scholar
Favilla, C.A.C., Romanini, S.J. & Wildner, W. (1998) Mapeamento Geológico Integrado da Bacia Hidrográfica do Guaíba: Programa de Controle e Administração Ambiental da Bacia Hidrográfica do Guáıba; Subprojecto Monitoramento do Uso e Ocupação Territorial. Cartas SH.22-V-A Cruz Alta, SH.22-V-B Passo Fundo e SH.22-V-C Santa Maria, escala 1/250000, CPRM/PRO-GUAIBA/FEPAM, Companhia de Pesquisa de Recursos Minerais, Secretaria de Minas e Metalurgia. Ministério de Minas e Energia do Brasil (in Portuguese).Google Scholar
Fonseca, M. (2000) Solos Argiluviados pouco insaturados. Caracterização físico-química e mineralógica de pédons típicos de solos Mediterrâneos Pardos de materiais não calcários. PhD thesis, Centro de Estudos de Pedologia, Portugal, 181 pp. (in Portuguese)Google Scholar
Fonseca, R. (2002) As albufeiras como estações de trânsito na sedimentação. Estudo geológico sobre a re-utilização de sedimentos de sistemas portugueses e brasileiros. Unpublished PhD thesis, Univ. Évora, Portugal, 649 pp. (in Portuguese with English abstract).Google Scholar
Fonseca, R., Barriga, F.J.A.S. & Fyfe, W. (1993) Suitability for agricultural use of sediments from the Maranhão reservoir. Pp. 665671 in: Optimization and Plant Nutrition (Fragoso, M.A.C. & Van Beusichem, M.L., editors), Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Fonseca, R., Barriga, F.J.A.S. & Fyfe, W.S. (1998) Reversing desertification by using dam reservoir sediments as agriculture soils. Episodes, 21, 218224.Google Scholar
Fonseca, R., Barriga, F.J.A.S. & Fyfe, W. (2003) Dam reservoir sediments as fertilizers and artificial soils. Case studies from Portugal and Brazil. Pp. 5562 in: Proceedings, Water and Soil Environments, Biological and Geological Perspectives (Tazaki, Kazue, editor). International Symposium of Kanazawa University, 21st Century COE Program, Kanazawa, Japan.Google Scholar
Greene-Kelly, R. (1955) Dehydration of montmorillonite minerals. Mineralogical Magazine, 30, 604615.Google Scholar
Grim, R.E. (1968) Clay Mineralogy, 2 nd edition. McGraw-Hill Company Inc., New York, 596 pp.Google Scholar
Hay, W.W. (1998) Detrital sediment fluxes from continents to oceans. Chemical Geology, 145, 287323.Google Scholar
Hillier, S. (1995) Erosion, sedimentation and sedimentary origin of clays. Pp. 162219 in: Origin and Mineralogy of Clays. Clays and the Environment (Velde, B., editor). Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
Hillier, S., Son, B.K. & Velde, B. (1996) Effects of hydrothermal activity on clay mineral diagenesis in Miocene shales and sandstones from the Ulleung (Tsushima) Back-Ark basin, East Sea (Sea of Japan), Korea. Clay Minerals, 31, 113126.CrossRefGoogle Scholar
Ko, J., Lee, G.H., Moon, H.S. & Song, Y. (1998) Alkylammonium characterization of smectite alteration in the Tertiary basins of southeast Korea. Clay Minerals, 33, 243254.Google Scholar
Menegotto, E. & Gasparetto, N. (1987) Intemperização de rochas vulcânicas básicas e ácidas na região de Santa Maria, RS. 1° Congresso Brasileiro de Geoquímica, 2, pp. 6983 (in Portuguese).Google Scholar
Meunier, A., Velde, B. & Griffault, L. (1998) The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage. Clay Minerals, 33, 187196.Google Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, New York, 378 pp.Google Scholar
Murray, H.H. (1999) Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 3950.CrossRefGoogle Scholar
Oliveira, J.T., Oliveira, V. & Piçarra, J.M. (1991) Traços gerais da evolução tecto-estratigráfica da zona de Ossa-Morena, em Portugal. Cuadernos Lab. Xeolóxico de Laxe Coruña, 16, pp. 221250.Google Scholar
Oliveira, J.T., Pereira, E., Piçarra, J.M., Young, T. & Romano, M. (1992) O Paleozóico Inferior de Portugal: síntese da estratigrafia e da evolução paleogeográfica. Pp. 359375 in: Paleozóico Inferior de Ibero-América (Gutiérrez-Marco, J.C., Saavedra, J. & Rábano, I., editors), Universidad de Extremadura, Spain.Google Scholar
Peate, D.W., Hawkesworth, C.J. & Mantovani, M.S.M. (1992) Chemical stratigraphy of the Parana lavas (South America): Classification of magma types and their spatial distribution. Bulleting of Volcanology, 55, 119139.CrossRefGoogle Scholar
Polli, G.O. & Roeser, (1987) Elementos-traço —Um apoio na identificação de rochas em areas profundamente intemperisadas. 1° Congresso Brasileiro de Geoquímica, 2, pp. 35-51 (in Portuguese).Google Scholar
Ramos, A.N. & Formoso, M.L.L. (1975) Argilominerais das rochas sedimentares da Bacia do Parana. Centro de Pesquisa e Desenvolvimento Leopoldo A. Miguez de Mello (Cenpes). Departamento de Exploração e Produção, Petrobrás, Brasil, pp. 1746.Google Scholar
Ransom, M.D., Bigham, J.M., SmeckN.E. & Jaynes, W.F. (1988) Transitional vermiculite-smectite phases in Aqualfs of South-western Ohio. Soil Science Society of America Journal, 52, 873880.Google Scholar
Righi, D. & Meunier, A. (1995) Origin of clays by rock weathering and soil formation. Pp. 43161 in: Origin and Mineralogy of Clays. Clays and the Environment (Velde, B., editor). Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
Righi, D., Räisänen, L. & Gillot, F. (1997) Clay mineral transformations in podzolized tills in central Finland. Clay Minerals, 32, 531544.Google Scholar
Schenato, F., Dudoignon, P. & Formoso, M.L.L.(1995) Evolução das texturas e da mineralogia de um derrame de basalto toleítico da Província do Parana (Rio Grande do Sul, Brasil). V Congresso Brasileiro de Geoquímica e III Congresso de Geoquímica dos Países de Língua Portuguesa, Niterói/RJ, Resumo expandido alt-04 (in Portuguese).Google Scholar
Thorez, J. (1975) Phyllosilicates and Clay Minerals. A Laboratory Handbook for their X-ray Diffraction Analysis (Lelotte, G., editor). Dison, Belgium.Google Scholar
Thorez, J. (1976) Pratical Identification of Clay Minerals. A Handbook for Teachers and Students in Clay Mineralogy (Lelotte, G., editor). Dison, Belgium, 70 pp.Google Scholar
Velde, B. (1995) Composition and mineralogy of clay minerals. Pp. 842 in: Origin and Mineralogy of Clays. Clays and the Environment (Velde, B., editor). Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
Vieira e Silva, J.M.A. (1990) Mecanismos de Alteração em Rochas Eruptivas do Baixo Alentejo. PhD thesis, University of Lisbon, Portugal, 240 pp. (in Portuguese).Google Scholar
Wilson, M.J. (1999) The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34, 725.Google Scholar